if (!require("BiocManager"))
install.packages("BiocManager")
BiocManager::install("glmSparseNet")
library(dplyr)
library(ggplot2)
library(survival)
library(futile.logger)
library(curatedTCGAData)
library(TCGAutils)
#
library(glmSparseNet)
#
# Some general options for futile.logger the debugging package
.Last.value <- flog.layout(layout.format('[~l] ~m'))
.Last.value <- glmSparseNet:::show.message(FALSE)
# Setting ggplot2 default theme as minimal
theme_set(ggplot2::theme_minimal())
The data is loaded from an online curated dataset downloaded from TCGA using
curatedTCGAData
bioconductor package and processed.
To accelerate the process we use a very reduced dataset down to 107 variables only (genes), which is stored as a data object in this package. However, the procedure to obtain the data manually is described in the following chunk.
brca <- tryCatch({
curatedTCGAData(
diseaseCode = "BRCA",
assays = "RNASeq2GeneNorm",
version = "1.1.38",
dry.run = FALSE
)
}, error = function(err) {
NULL
})
brca <- curatedTCGAData(diseaseCode = "BRCA", assays = "RNASeq2GeneNorm",
version = "1.1.38", dry.run = FALSE)
brca <- TCGAutils::TCGAsplitAssays(brca, c('01','11'))
xdata.raw <- t(cbind(assay(brca[[1]]), assay(brca[[2]])))
# Get matches between survival and assay data
class.v <- TCGAbiospec(rownames(xdata.raw))$sample_definition %>% factor
names(class.v) <- rownames(xdata.raw)
# keep features with standard deviation > 0
xdata.raw <- xdata.raw %>%
{ (apply(., 2, sd) != 0) } %>%
{ xdata.raw[, .] } %>%
scale()
set.seed(params$seed)
small.subset <- c('CD5', 'CSF2RB', 'HSF1', 'IRGC', 'LRRC37A6P', 'NEUROG2',
'NLRC4', 'PDE11A', 'PIK3CB', 'QARS', 'RPGRIP1L', 'SDC1',
'TMEM31', 'YME1L1', 'ZBTB11',
sample(colnames(xdata.raw), 100))
xdata <- xdata.raw[, small.subset[small.subset %in% colnames(xdata.raw)]]
ydata <- class.v
Fit model model penalizing by the hubs using the cross-validation function by
cv.glmHub
.
fitted <- cv.glmHub(xdata, ydata,
family = 'binomial',
network = 'correlation',
nlambda = 1000,
network.options = networkOptions(cutoff = .6,
min.degree = .2))
Shows the results of 1000
different parameters used to find the optimal value
in 10-fold cross-validation. The two vertical dotted lines represent the best
model and a model with less variables selected (genes), but within a standard
error distance from the best.
plot(fitted)
Taking the best model described by lambda.min
coefs.v <- coef(fitted, s = 'lambda.min')[,1] %>% { .[. != 0]}
coefs.v %>% {
data.frame(ensembl.id = names(.),
gene.name = geneNames(names(.))$external_gene_name,
coefficient = .,
stringsAsFactors = FALSE)
} %>%
arrange(gene.name) %>%
knitr::kable()
ensembl.id | gene.name | coefficient | |
---|---|---|---|
(Intercept) | (Intercept) | (Intercept) | -6.8189813 |
CD5 | CD5 | AMOTL1 | -1.1200445 |
NLRC4 | NLRC4 | ATR | -1.4434578 |
PIK3CB | PIK3CB | B3GALT2 | -0.3880002 |
ZBTB11 | ZBTB11 | BAG2 | -0.3325729 |
ATR | ATR | C16orf82 | 1.2498304 |
IL2 | IL2 | CD5 | 0.6327083 |
GDF11 | GDF11 | CIITA | -0.2676642 |
DCP1A | DCP1A | DCP1A | 0.2994599 |
AMOTL1 | AMOTL1 | FAM86B1 | 0.4430643 |
BAG2 | BAG2 | FNIP2 | -0.1841676 |
C16orf82 | C16orf82 | GDF11 | 0.0396368 |
FAM86B1 | FAM86B1 | GNG11 | 0.2025463 |
FNIP2 | FNIP2 | GREM2 | 0.6101759 |
MS4A4A | MS4A4A | GZMB | 1.1614779 |
B3GALT2 | B3GALT2 | HAX1 | -0.0867011 |
GNG11 | GNG11 | IL2 | 3.0659066 |
NDRG2 | NDRG2 | MMP28 | 1.1142519 |
HAX1 | HAX1 | MS4A4A | -0.1516837 |
GREM2 | GREM2 | NDRG2 | -0.2014884 |
CIITA | CIITA | NLRC4 | 0.4256103 |
GZMB | GZMB | PIK3CB | -2.7663574 |
MMP28 | MMP28 | ZBTB11 | -0.8438024 |
geneNames(names(coefs.v)) %>% { hallmarks(.$external_gene_name)$heatmap }
## Error in curl::curl_fetch_memory(url, handle = handle): error:0A000126:SSL routines::unexpected eof while reading
## Request failed [ERROR]. Retrying in 1.1 seconds...
## Error in curl::curl_fetch_memory(url, handle = handle): error:0A000126:SSL routines::unexpected eof while reading
## Request failed [ERROR]. Retrying in 1.1 seconds...
## Cannot call Hallmark API, please try again later.
## NULL
## [INFO] Misclassified (11)
## [INFO] * False primary solid tumour: 7
## [INFO] * False normal : 4
Histogram of predicted response
ROC curve
## Setting levels: control = Primary Solid Tumor, case = Solid Tissue Normal
## Setting direction: controls < cases
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
sessionInfo()
## R version 4.3.2 Patched (2023-11-13 r85521)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] glmSparseNet_1.20.1 glmnet_4.1-8
## [3] Matrix_1.6-5 TCGAutils_1.22.2
## [5] curatedTCGAData_1.24.0 MultiAssayExperiment_1.28.0
## [7] SummarizedExperiment_1.32.0 Biobase_2.62.0
## [9] GenomicRanges_1.54.1 GenomeInfoDb_1.38.5
## [11] IRanges_2.36.0 S4Vectors_0.40.2
## [13] BiocGenerics_0.48.1 MatrixGenerics_1.14.0
## [15] matrixStats_1.2.0 futile.logger_1.4.3
## [17] survival_3.5-7 ggplot2_3.4.4
## [19] dplyr_1.1.4 BiocStyle_2.30.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_1.8.8 shape_1.4.6
## [3] magrittr_2.0.3 magick_2.8.2
## [5] GenomicFeatures_1.54.3 farver_2.1.1
## [7] rmarkdown_2.25 BiocIO_1.12.0
## [9] zlibbioc_1.48.0 vctrs_0.6.5
## [11] memoise_2.0.1 Rsamtools_2.18.0
## [13] RCurl_1.98-1.14 htmltools_0.5.7
## [15] S4Arrays_1.2.0 forcats_1.0.0
## [17] BiocBaseUtils_1.4.0 progress_1.2.3
## [19] AnnotationHub_3.10.0 lambda.r_1.2.4
## [21] curl_5.2.0 pROC_1.18.5
## [23] SparseArray_1.2.3 sass_0.4.8
## [25] bslib_0.6.1 plyr_1.8.9
## [27] futile.options_1.0.1 cachem_1.0.8
## [29] GenomicAlignments_1.38.2 mime_0.12
## [31] lifecycle_1.0.4 iterators_1.0.14
## [33] pkgconfig_2.0.3 R6_2.5.1
## [35] fastmap_1.1.1 GenomeInfoDbData_1.2.11
## [37] shiny_1.8.0 digest_0.6.34
## [39] colorspace_2.1-0 AnnotationDbi_1.64.1
## [41] ExperimentHub_2.10.0 RSQLite_2.3.5
## [43] filelock_1.0.3 labeling_0.4.3
## [45] fansi_1.0.6 httr_1.4.7
## [47] abind_1.4-5 compiler_4.3.2
## [49] bit64_4.0.5 withr_3.0.0
## [51] BiocParallel_1.36.0 DBI_1.2.1
## [53] highr_0.10 biomaRt_2.58.2
## [55] rappdirs_0.3.3 DelayedArray_0.28.0
## [57] rjson_0.2.21 tools_4.3.2
## [59] interactiveDisplayBase_1.40.0 httpuv_1.6.14
## [61] glue_1.7.0 restfulr_0.0.15
## [63] promises_1.2.1 grid_4.3.2
## [65] generics_0.1.3 gtable_0.3.4
## [67] tzdb_0.4.0 hms_1.1.3
## [69] xml2_1.3.6 utf8_1.2.4
## [71] XVector_0.42.0 BiocVersion_3.18.1
## [73] foreach_1.5.2 pillar_1.9.0
## [75] stringr_1.5.1 later_1.3.2
## [77] splines_4.3.2 BiocFileCache_2.10.1
## [79] lattice_0.22-5 rtracklayer_1.62.0
## [81] bit_4.0.5 tidyselect_1.2.0
## [83] Biostrings_2.70.2 knitr_1.45
## [85] bookdown_0.37 xfun_0.41
## [87] stringi_1.8.3 yaml_2.3.8
## [89] evaluate_0.23 codetools_0.2-19
## [91] tibble_3.2.1 BiocManager_1.30.22
## [93] cli_3.6.2 xtable_1.8-4
## [95] munsell_0.5.0 jquerylib_0.1.4
## [97] Rcpp_1.0.12 GenomicDataCommons_1.26.0
## [99] dbplyr_2.4.0 png_0.1-8
## [101] XML_3.99-0.16.1 parallel_4.3.2
## [103] ellipsis_0.3.2 readr_2.1.5
## [105] blob_1.2.4 prettyunits_1.2.0
## [107] bitops_1.0-7 scales_1.3.0
## [109] purrr_1.0.2 crayon_1.5.2
## [111] rlang_1.1.3 KEGGREST_1.42.0
## [113] rvest_1.0.3 formatR_1.14