Starting from Version 1.2.0, escheR
package supports additional two data structures as input, including SpatialExperiment
and data.frame
from base
R. In addition, escheR
supports in-situ visualization of image-based spatially resolved data, which will be the focus of future development.
SingleCellExperiment
SpatialExperiment
inherits SingleCellExperiment
Following the same syntax, one can also visualize dimensionality reduced embeddings of a SpatialExperiment
object by providing the argument dimred
with a non-null value. Hence, the first 2 columns of the corresponding reducedDim(spe)
assay will be used as the x-y coordinate of the plot, replacing spatialCoords(spe)
.
library(escheR)
library(STexampleData)
library(scater)
library(scran)
spe <- Visium_humanDLPFC() |>
logNormCounts()
top.gene <- getTopHVGs(spe, n=500)
set.seed(100) # See below.
spe <- runPCA(spe, subset_row = top.gene)
make_escheR(
spe,
dimred = "PCA"
) |>
add_fill(var = "ground_truth") +
theme_minimal()
SpatialExperiment
ObjectTo demonstrate the principle that escheR
can be used to visualize image-based spatially-resolved data pending optimization, we include two image-based spatially resolved transcriptomics data generated via seqFish platform and Slide-seq V2 platform respectively. The two datasets have been previously curated in the STexampleData
package
library(STexampleData)
library(escheR)
spe_seqFISH <- seqFISH_mouseEmbryo()
make_escheR(spe_seqFISH) |>
add_fill(var = "embryo")
NOTE: trimming down the
colData(spe)
before piping into make-escheR could reduce the computation time to make the plots, specifically whencolData(spe)
contains extremely large number of irrelavent features/columns.
We aim to provide accessibility to all users regardless of their programming background and preferred single-cell analysis pipelines. Nevertheless , with limited resource, our sustaining efforts will prioritize towards the maintenance of the established functionality and the optimization for image-based spatially resolved data. We regret we are not be able to provide seamless interface to other R pipelines such as Seurat
and Giotto
in foreseeable future.
Instead, we provide a generic function that works with a data.frame
object as input. For example, relevant features in Suerat
can be easily exported as a data.frame
object manually or via tidyseurat
[https://github.com/stemangiola/tidyseurat]. The exported data frame can be pipe into escheR
.
library(escheR)
library(Seurat)
pbmc_small <- SeuratObject::pbmc_small
pbmc_2pc <- pbmc_small@reductions$pca@cell.embeddings[,1:2]
pbmc_meta <- pbmc_small@meta.data
#> Call generic function for make_escheR.data.frame
make_escheR(
object = pbmc_meta,
.x = pbmc_2pc[,1],
.y = pbmc_2pc[,2]) |>
add_fill(var = "groups")
utils::sessionInfo()
#> R version 4.3.1 (2023-06-16)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] BumpyMatrix_1.10.0 scran_1.30.0
#> [3] scater_1.30.0 scuttle_1.12.0
#> [5] ggpubr_0.6.0 Matrix_1.6-1.1
#> [7] STexampleData_1.9.0 SpatialExperiment_1.12.0
#> [9] SingleCellExperiment_1.24.0 SummarizedExperiment_1.32.0
#> [11] Biobase_2.62.0 GenomicRanges_1.54.0
#> [13] GenomeInfoDb_1.38.0 IRanges_2.36.0
#> [15] S4Vectors_0.40.0 MatrixGenerics_1.14.0
#> [17] matrixStats_1.0.0 ExperimentHub_2.10.0
#> [19] AnnotationHub_3.10.0 BiocFileCache_2.10.0
#> [21] dbplyr_2.3.4 BiocGenerics_0.48.0
#> [23] escheR_1.2.0 ggplot2_3.4.4
#> [25] BiocStyle_2.30.0
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.7
#> [3] magrittr_2.0.3 ggbeeswarm_0.7.2
#> [5] magick_2.8.1 farver_2.1.1
#> [7] rmarkdown_2.25 zlibbioc_1.48.0
#> [9] vctrs_0.6.4 memoise_2.0.1
#> [11] DelayedMatrixStats_1.24.0 RCurl_1.98-1.12
#> [13] rstatix_0.7.2 htmltools_0.5.6.1
#> [15] S4Arrays_1.2.0 curl_5.1.0
#> [17] BiocNeighbors_1.20.0 broom_1.0.5
#> [19] SparseArray_1.2.0 sass_0.4.7
#> [21] bslib_0.5.1 cachem_1.0.8
#> [23] igraph_1.5.1 mime_0.12
#> [25] lifecycle_1.0.3 pkgconfig_2.0.3
#> [27] rsvd_1.0.5 R6_2.5.1
#> [29] fastmap_1.1.1 GenomeInfoDbData_1.2.11
#> [31] shiny_1.7.5.1 digest_0.6.33
#> [33] colorspace_2.1-0 AnnotationDbi_1.64.0
#> [35] dqrng_0.3.1 irlba_2.3.5.1
#> [37] RSQLite_2.3.1 beachmat_2.18.0
#> [39] filelock_1.0.2 labeling_0.4.3
#> [41] fansi_1.0.5 httr_1.4.7
#> [43] abind_1.4-5 compiler_4.3.1
#> [45] bit64_4.0.5 withr_2.5.1
#> [47] backports_1.4.1 BiocParallel_1.36.0
#> [49] carData_3.0-5 viridis_0.6.4
#> [51] DBI_1.1.3 ggsignif_0.6.4
#> [53] rappdirs_0.3.3 DelayedArray_0.28.0
#> [55] rjson_0.2.21 bluster_1.12.0
#> [57] tools_4.3.1 vipor_0.4.5
#> [59] beeswarm_0.4.0 interactiveDisplayBase_1.40.0
#> [61] httpuv_1.6.12 glue_1.6.2
#> [63] promises_1.2.1 grid_4.3.1
#> [65] cluster_2.1.4 generics_0.1.3
#> [67] gtable_0.3.4 tidyr_1.3.0
#> [69] metapod_1.10.0 BiocSingular_1.18.0
#> [71] ScaledMatrix_1.10.0 car_3.1-2
#> [73] utf8_1.2.4 XVector_0.42.0
#> [75] ggrepel_0.9.4 BiocVersion_3.18.0
#> [77] pillar_1.9.0 limma_3.58.0
#> [79] later_1.3.1 dplyr_1.1.3
#> [81] lattice_0.22-5 bit_4.0.5
#> [83] tidyselect_1.2.0 locfit_1.5-9.8
#> [85] Biostrings_2.70.0 knitr_1.44
#> [87] gridExtra_2.3 bookdown_0.36
#> [89] edgeR_4.0.0 xfun_0.40
#> [91] statmod_1.5.0 yaml_2.3.7
#> [93] evaluate_0.22 codetools_0.2-19
#> [95] tibble_3.2.1 BiocManager_1.30.22
#> [97] cli_3.6.1 xtable_1.8-4
#> [99] munsell_0.5.0 jquerylib_0.1.4
#> [101] Rcpp_1.0.11 png_0.1-8
#> [103] parallel_4.3.1 ellipsis_0.3.2
#> [105] blob_1.2.4 sparseMatrixStats_1.14.0
#> [107] bitops_1.0-7 viridisLite_0.4.2
#> [109] scales_1.2.1 purrr_1.0.2
#> [111] crayon_1.5.2 rlang_1.1.1
#> [113] cowplot_1.1.1 KEGGREST_1.42.0