The ReactomeGSA package is a client to the web-based Reactome Analysis System. Essentially, it performs a gene set analysis using the latest version of the Reactome pathway database as a backend.
This vignette shows how the ReactomeGSA package can be used to perform a pathway analysis of cell clusters in single-cell RNA-sequencing data.
To cite this package, use
Griss J. ReactomeGSA, https://github.com/reactome/ReactomeGSA (2019)
The ReactomeGSA
package can be directly installed from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
if (!require(ReactomeGSA))
BiocManager::install("ReactomeGSA")
# install the ReactomeGSA.data package for the example data
if (!require(ReactomeGSA.data))
BiocManager::install("ReactomeGSA.data")
For more information, see https://bioconductor.org/install/.
As an example we load single-cell RNA-sequencing data of B cells extracted from the dataset published by Jerby-Arnon et al. (Cell, 2018).
Note: This is not a complete Seurat object. To decrease the size, the object only contains gene expression values and cluster annotations.
library(ReactomeGSA.data)
#> Loading required package: limma
#> Loading required package: edgeR
#> Loading required package: ReactomeGSA
#> Loading required package: Seurat
#> Loading required package: SeuratObject
#> Loading required package: sp
#> 'SeuratObject' was built with package 'Matrix' 1.6.1.1 but the current
#> version is 1.6.2; it is recomended that you reinstall 'SeuratObject' as
#> the ABI for 'Matrix' may have changed
#>
#> Attaching package: 'SeuratObject'
#> The following object is masked from 'package:base':
#>
#> intersect
data(jerby_b_cells)
jerby_b_cells
#> An object of class Seurat
#> 23686 features across 920 samples within 1 assay
#> Active assay: RNA (23686 features, 0 variable features)
#> 2 layers present: counts, data
The pathway analysis is at the very end of a scRNA-seq workflow. This means, that any Q/C was already performed, the data was normalized and cells were already clustered.
The ReactomeGSA package can now be used to get pathway-level expression values for every cell cluster. This is achieved by calculating the mean gene expression for every cluster and then submitting this data to a gene set variation analysis.
All of this is wrapped in the single analyse_sc_clusters
function.
library(ReactomeGSA)
gsva_result <- analyse_sc_clusters(jerby_b_cells, verbose = TRUE)
#> Calculating average cluster expression...
#> Converting expression data to string... (This may take a moment)
#> Conversion complete
#> Submitting request to Reactome API...
#> Compressing request data...
#> Reactome Analysis submitted succesfully
#> Converting dataset Seurat...
#> Mapping identifiers...
#> Performing gene set analysis using ssGSEA
#> Analysing dataset 'Seurat' using ssGSEA
#> Retrieving result...
The resulting object is a standard ReactomeAnalysisResult
object.
gsva_result
#> ReactomeAnalysisResult object
#> Reactome Release: 86
#> Results:
#> - Seurat:
#> 1774 pathways
#> 11082 fold changes for genes
#> No Reactome visualizations available
#> ReactomeAnalysisResult
pathways
returns the pathway-level expression values per cell cluster:
pathway_expression <- pathways(gsva_result)
# simplify the column names by removing the default dataset identifier
colnames(pathway_expression) <- gsub("\\.Seurat", "", colnames(pathway_expression))
pathway_expression[1:3,]
#> Name Cluster_1 Cluster_10 Cluster_11
#> R-HSA-1059683 Interleukin-6 signaling 0.1063336 0.09572387 0.1416517
#> R-HSA-109606 Intrinsic Pathway for Apoptosis 0.1148089 0.11105193 0.1130454
#> R-HSA-109703 PKB-mediated events 0.1273835 0.05268901 0.1066972
#> Cluster_12 Cluster_13 Cluster_2 Cluster_3 Cluster_4 Cluster_5
#> R-HSA-1059683 0.10863135 0.09947070 0.11418297 0.11132268 0.10947271 0.10290393
#> R-HSA-109606 0.11971293 0.12869212 0.10932699 0.11247227 0.11491233 0.10575585
#> R-HSA-109703 0.09571927 0.07353405 0.08346708 0.08423512 0.05581219 0.04623373
#> Cluster_6 Cluster_7 Cluster_8 Cluster_9
#> R-HSA-1059683 0.09523354 0.11886914 0.13428860 0.10092433
#> R-HSA-109606 0.11174731 0.11912706 0.12266921 0.11527553
#> R-HSA-109703 0.12394279 0.07725313 0.07844829 0.01429748
A simple approach to find the most relevant pathways is to assess the maximum difference in expression for every pathway:
# find the maximum differently expressed pathway
max_difference <- do.call(rbind, apply(pathway_expression, 1, function(row) {
values <- as.numeric(row[2:length(row)])
return(data.frame(name = row[1], min = min(values), max = max(values)))
}))
max_difference$diff <- max_difference$max - max_difference$min
# sort based on the difference
max_difference <- max_difference[order(max_difference$diff, decreasing = T), ]
head(max_difference)
#> name min
#> R-HSA-350864 Regulation of thyroid hormone activity -0.4877260
#> R-HSA-8964540 Alanine metabolism -0.5061032
#> R-HSA-190374 FGFR1c and Klotho ligand binding and activation -0.3432688
#> R-HSA-140180 COX reactions -0.3450059
#> R-HSA-9024909 BDNF activates NTRK2 (TRKB) signaling -0.3750779
#> R-HSA-5263617 Metabolism of ingested MeSeO2H into MeSeH -0.1934677
#> max diff
#> R-HSA-350864 0.3757260 0.8634520
#> R-HSA-8964540 0.2561373 0.7622405
#> R-HSA-190374 0.4160460 0.7593148
#> R-HSA-140180 0.3727088 0.7177147
#> R-HSA-9024909 0.3236430 0.6987209
#> R-HSA-5263617 0.4938968 0.6873645
The ReactomeGSA package contains two functions to visualize these pathway results. The first simply plots the expression for a selected pathway:
For a better overview, the expression of multiple pathways can be shown as a heatmap using gplots
heatmap.2
function:
# Additional parameters are directly passed to gplots heatmap.2 function
plot_gsva_heatmap(gsva_result, max_pathways = 15, margins = c(6,20))
The plot_gsva_heatmap
function can also be used to only display specific pahtways:
# limit to selected B cell related pathways
relevant_pathways <- c("R-HSA-983170", "R-HSA-388841", "R-HSA-2132295", "R-HSA-983705", "R-HSA-5690714")
plot_gsva_heatmap(gsva_result,
pathway_ids = relevant_pathways, # limit to these pathways
margins = c(6,30), # adapt the figure margins in heatmap.2
dendrogram = "col", # only plot column dendrogram
scale = "row", # scale for each pathway
key = FALSE, # don't display the color key
lwid=c(0.1,4)) # remove the white space on the left
This analysis shows us that cluster 8 has a marked up-regulation of B Cell receptor signalling, which is linked to a co-stimulation of the CD28 family. Additionally, there is a gradient among the cluster with respect to genes releated to antigen presentation.
Therefore, we are able to further classify the observed B cell subtypes based on their pathway activity.
The pathway-level expression analysis can also be used to run a Principal Component Analysis on the samples. This is simplified through the function plot_gsva_pca
:
In this analysis, cluster 11 is a clear outlier from the other B cell subtypes and therefore might be prioritised for further evaluation.
sessionInfo()
#> R version 4.3.2 (2023-10-31)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.18-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] ReactomeGSA.data_1.16.1 Seurat_5.0.0 SeuratObject_5.0.0
#> [4] sp_2.1-1 ReactomeGSA_1.16.1 edgeR_4.0.1
#> [7] limma_3.58.1
#>
#> loaded via a namespace (and not attached):
#> [1] RColorBrewer_1.1-3 jsonlite_1.8.7 magrittr_2.0.3
#> [4] spatstat.utils_3.0-4 farver_2.1.1 rmarkdown_2.25
#> [7] vctrs_0.6.4 ROCR_1.0-11 spatstat.explore_3.2-5
#> [10] htmltools_0.5.7 progress_1.2.2 curl_5.1.0
#> [13] sass_0.4.7 sctransform_0.4.1 parallelly_1.36.0
#> [16] KernSmooth_2.23-22 bslib_0.5.1 htmlwidgets_1.6.2
#> [19] ica_1.0-3 plyr_1.8.9 plotly_4.10.3
#> [22] zoo_1.8-12 cachem_1.0.8 igraph_1.5.1
#> [25] mime_0.12 lifecycle_1.0.4 pkgconfig_2.0.3
#> [28] Matrix_1.6-2 R6_2.5.1 fastmap_1.1.1
#> [31] fitdistrplus_1.1-11 future_1.33.0 shiny_1.7.5.1
#> [34] digest_0.6.33 colorspace_2.1-0 patchwork_1.1.3
#> [37] tensor_1.5 RSpectra_0.16-1 irlba_2.3.5.1
#> [40] labeling_0.4.3 progressr_0.14.0 fansi_1.0.5
#> [43] spatstat.sparse_3.0-3 httr_1.4.7 polyclip_1.10-6
#> [46] abind_1.4-5 compiler_4.3.2 withr_2.5.2
#> [49] fastDummies_1.7.3 highr_0.10 gplots_3.1.3
#> [52] MASS_7.3-60 gtools_3.9.4 caTools_1.18.2
#> [55] tools_4.3.2 lmtest_0.9-40 httpuv_1.6.12
#> [58] future.apply_1.11.0 goftest_1.2-3 glue_1.6.2
#> [61] nlme_3.1-163 promises_1.2.1 grid_4.3.2
#> [64] Rtsne_0.16 cluster_2.1.4 reshape2_1.4.4
#> [67] generics_0.1.3 gtable_0.3.4 spatstat.data_3.0-3
#> [70] tidyr_1.3.0 hms_1.1.3 data.table_1.14.8
#> [73] utf8_1.2.4 spatstat.geom_3.2-7 RcppAnnoy_0.0.21
#> [76] ggrepel_0.9.4 RANN_2.6.1 pillar_1.9.0
#> [79] stringr_1.5.0 spam_2.10-0 RcppHNSW_0.5.0
#> [82] later_1.3.1 splines_4.3.2 dplyr_1.1.3
#> [85] lattice_0.22-5 survival_3.5-7 deldir_1.0-9
#> [88] tidyselect_1.2.0 locfit_1.5-9.8 miniUI_0.1.1.1
#> [91] pbapply_1.7-2 knitr_1.45 gridExtra_2.3
#> [94] scattermore_1.2 xfun_0.41 statmod_1.5.0
#> [97] matrixStats_1.1.0 stringi_1.8.1 lazyeval_0.2.2
#> [100] yaml_2.3.7 evaluate_0.23 codetools_0.2-19
#> [103] tibble_3.2.1 cli_3.6.1 uwot_0.1.16
#> [106] xtable_1.8-4 reticulate_1.34.0 munsell_0.5.0
#> [109] jquerylib_0.1.4 Rcpp_1.0.11 globals_0.16.2
#> [112] spatstat.random_3.2-1 png_0.1-8 parallel_4.3.2
#> [115] ellipsis_0.3.2 ggplot2_3.4.4 prettyunits_1.2.0
#> [118] dotCall64_1.1-0 bitops_1.0-7 listenv_0.9.0
#> [121] viridisLite_0.4.2 scales_1.2.1 ggridges_0.5.4
#> [124] crayon_1.5.2 leiden_0.4.3 purrr_1.0.2
#> [127] rlang_1.1.2 cowplot_1.1.1