miaSim 1.6.0
The aim of this case study is to design and demonstrate the existence of nutrient concentration threshold which limits the beta-diversity of communities.
To fulfill this aim, we designed a gradient of environments, as well as a gradient of communities.
library(ggplot2)
library(vegan)
library(reshape2)
library(miaSim)
library(philentropy)
library(cluster)
This batch of simulations is time-consuming. To reduce the calculation burden, we have decreased the numbers of environments, resources, and communities from the original 10 to 5, and made other minor modifications.
This function generates a data frame, where each row is arranged in an increasing dissimilarity to the first row.
gradient.df.generator <- function(n_row, n_col, density_row, max_gradient, error_interval){
list_initial <- list()
dissimilarity.gradient <- seq(from = 0, to = max_gradient, length.out = n_row)
for (i in seq_len(n_row)){
print(i)
if (i == 1){
row_temp <- rbeta(n_col, 1, 1/n_col)
col_to_remove <- sample(x = seq_len(n_col), size = n_col-n_col*density_row)
row_temp[col_to_remove] <- 0
list_initial[[i]] <- row_temp
} else {
while (length(list_initial) < i) {
row_temp <- rbeta(n_col, 1, 1/n_col)
col_to_remove <- sample(x = seq_len(n_col), size = n_col-n_col*density_row)
row_temp[col_to_remove] <- 0
diff_temp <- abs(vegdist(rbind(list_initial[[1]], row_temp), method = "bray") - dissimilarity.gradient[i])
if (diff_temp < error_interval) {
list_initial[[i]] <- row_temp
}
}
}
}
dataframe_to_return <- as.data.frame(t(matrix(unlist(list_initial), ncol = n_row)))
return(dataframe_to_return)
}
n.community <- 5 # you can also try 20 or even 50.
density.community <- 0.8
set.seed(42)
community.initial.df <- gradient.df.generator(n_row = n.community,
n_col = n_species,
density_row = density.community,
max_gradient = 0.7,
error_interval = 0.1)
dist.community.initial.df <- vegdist(community.initial.df, method = "bray")
community.initial.tse <- TreeSummarizedExperiment(assays=SimpleList(abundances=t(as.matrix(community.initial.df))))
These will be replaced soon by the TreeSummarizedExperiment equivalents.
makePlot <- function(out_matrix, title = "abundance of species by time", obj = "species", y.label = "x.t"){
df <- as.data.frame(out_matrix)
dft <- melt(df, id="time")
names(dft)[2] = obj
names(dft)[3] = y.label
lgd = ncol(df)<= 20
ggplot(dft, aes_string(names(dft)[1], names(dft)[3], col = names(dft)[2])) +
geom_line(show.legend = lgd, lwd=0.5) +
ggtitle(title) +
theme_linedraw() +
theme(plot.title = element_text(hjust = 0.5, size = 14))
}
makePlotRes <- function(out_matrix, title = "quantity of compounds by time"){
df <- as.data.frame(out_matrix)
dft <- melt(df, id="time")
names(dft)[2] = "resources"
names(dft)[3] = "S.t"
lgd = ncol(df)<= 20
ggplot(dft, aes(time, S.t, col = resources)) +
geom_line(show.legend = lgd, lwd=0.5) +
ggtitle(title) +
theme_linedraw() +
theme(plot.title = element_text(hjust = 0.5, size = 14))
}
makeHeatmap <-function(matrix.A,
title = "Consumption/production matrix",
y.label = 'resources',
x.label = 'species',
midpoint_color = NULL,
lowColor = "red",
midColor = "white",
highColor = "blue"){
df <- melt(t(matrix.A))
if (is.null(midpoint_color)) {
midpoint_color <- 0
}
names(df)<- c("x", "y", "strength")
df$y <- factor(df$y, levels=rev(unique(sort(df$y))))
fig <- ggplot(df, aes(x,y,fill=strength)) + geom_tile() + coord_equal() +
theme(axis.title = element_blank()) +
scale_fill_gradient2('strength', low = lowColor,
mid = midColor, high = highColor, midpoint = midpoint_color)+
theme_void() + ggtitle(title)
if (ncol(matrix.A)<=10 & nrow(matrix.A)<=10){
fig <- fig + geom_text(aes(label = round(strength, 2)))
} else if (ncol(matrix.A)<=15 & nrow(matrix.A)<=15){
fig <- fig + geom_text(aes(label = round(strength, 1)))
} else {
fig <- fig
}
fig <- fig + labs(x = x.label, y = y.label)+
theme_linedraw() +
theme(plot.title = element_text(hjust = 0.5, size = 14),
axis.text.x = element_text(
angle = 90))
if (nrow(matrix.A) >= 20){
# too many species
fig <- fig + theme(
axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank(),
)
}
if (ncol(matrix.A) >= 20){
# too many resources
fig <- fig + theme(
axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank()
)
}
fig
}
makeHeatmap(as.matrix(dist.community.initial.df),
title = "dissimilarity matrix",
x.label = "community.1",
y.label = "community.2")
resourceConcentration <- 10^seq(0,4,1) # 1 to 10000
n.medium <- 5
density.medium <- 0.8
n_species <- 5
set.seed(42)
resource.initial.df <- gradient.df.generator(n_row = n.medium,
n_col = n_resources, density_row = density.medium,
max_gradient = 0.7, error_interval = 0.1)
crmExample <- simulateConsumerResource(
n_species = n_species,
n_resources = n_resources,
E = E,
x0 = as.numeric(community.initial.df[1,]),
resources = as.numeric(resourceConcentration[3]*resource.initial.df[1,]),
growth_rates = growth_rates,
monod_constant = monod_constant,
stochastic = FALSE,
t_end = 50,
t_step = 1,
t_store = 50,
norm = FALSE)
#makePlot(crmExample$matrix)
#makePlotRes(crmExample$resources)
## Generate simulations and store the final community in community.simulation
## In this step, the final relative abundance table is basisComposition_prop
set.seed(42)
community.simulation <- list()
counter_i <- 1
resourceConcentration <- 10^seq(0,4,1) # 1 to 10000
n.medium <- 5
for (resConc in resourceConcentration) {
for (medium in seq_len(n.medium)){
crm_params$resources <- as.numeric(resource.initial.df[medium,]*resConc)
paramx0 <- as.list(as.data.frame(t(community.initial.df)))
crm_param_iter <- list(x0 = paramx0)
print(paste("resConc", resConc, "medium", medium))
crmMoments <- generateSimulations(model = "simulateConsumerResource",
params_list = crm_params,
param_iter = crm_param_iter,
n_instances = n.instances,
t_end = 50)
# pick community composition at the last time point
community.simulation[[counter_i]] <- as.data.frame(do.call(rbind, lapply(crmMoments, function (x) {assay(x, "counts")[, ncol(x)]})))
counter_i <- counter_i + 1
}
}
basisComposition <- do.call(rbind.data.frame, community.simulation)
rm(counter_i, community.simulation)
basisComposition_prop <- basisComposition / rowSums(basisComposition)
## Make UMAP plots
## In this step, plot result is stored in umap_CRM_gradient_plot, and
## this is visualized in different facets.
resourceConcentration <- 10^seq(0,4,1) # 1 to 10000
n.medium <- 5
n.community <- 5
concentration <- as.factor(rep(resourceConcentration, each = n.medium*n.community))
medium <- as.factor(rep(seq_len(n.medium), each = n.community ,times = length(resourceConcentration) ))
community <- as.factor(rep(seq_len(n.community), times = length(resourceConcentration)*n.medium))
# Visualize with UMAP
## Provide the community data as TreeSE object
library(scater)
tse <- TreeSummarizedExperiment(
assays=SimpleList(abundances=t(as.matrix(basisComposition))),
colData=DataFrame(Medium=medium,
Concentration=concentration,
Community=community
)
)
## Add UMAP
tse <- runUMAP(tse, name = "UMAP", exprs_values = "abundances")
## Plot UMAP
plotReducedDim(tse, "UMAP", colour_by="Medium", shape_by="Concentration")
# Same for compositional abundance data
library(mia)
## -- add relative abundances;
tse <- transformSamples(tse, assay.type="abundances", method="relabundance")
tse <- runUMAP(tse, name = "UMAP_compositional", exprs_values = "relabundance")
plotReducedDim(tse, "UMAP_compositional", colour_by="Medium", shape_by="Concentration")
# Finally with communities
umap_CRM_gradient_plot <<- plotReducedDim(tse, "UMAP_compositional",
colour_by="Medium", shape_by="Community", size_by="Concentration")
In this part, different visualization of results demonstrate (in various facets) the gradual change of communities’ beta diversity. The first figure indicates that the initial community composition is more important than the combinations of initial available resources.
The first sub-figure in the second figure demonstrates that in an oligotrophic (less available nutrients) environment, communities won’t change much in a given time, whilst the last two sub-figures resemble each other, implying that the nutrient is no longer the limiting factor of the beta-diversity of the community. This pattern is further displayed in the following “curve plot”.
In the third figure, the second and the th community always stays more similar, despite their initial dissimilarity, indicating that they might belong to one community type. This can be validated by input 20 or even 50 as n.community in this case study: communities turns into clusters in each sub-figures.
# FIXME: the visual output can be polished later.
print(umap_CRM_gradient_plot)
umap_CRM_gradient_plot + facet_grid(size_by ~ ., labeller = label_both)
umap_CRM_gradient_plot + facet_grid(colour_by ~ size_by, labeller = label_both)
umap_CRM_gradient_plot + facet_grid(shape_by ~ size_by, labeller = label_both)
umap_CRM_gradient_plot + facet_grid(shape_by ~ colour_by, labeller = label_both)
Saturation curve of average beta-diversity between communities with community 1.
In this part, we demonstrate that the average distance from other communities to community 1 will reach to a threshold of nutrients, after which the average distance won’t increase along with the total concentration of nutrients.
Let us first define a function calculating the mean distance to the first community.
average_distance <- function(df, res_conc_type, com_type, method = "euclidean"){
sub_df <- df[df$concentration == res_conc_type & df$community == com_type,]
combines <- combn(sub_df$medium, 2)
distances <- NULL
for (i in seq_len(ncol(combines))) {
distances[i] <- dist(sub_df[combines[,i], c(1, 2)])
}
return(mean(distances))
}
This shows how distance saturations could be calculated. Not evaluated currently.
distance_saturation_data <- data.frame(concentration = integer(),
community = integer(),
average_distance = numeric())
#umap_CRM_coor <- cbind(umap_CRM_coor, concentration, medium, community)
umap_CRM_coor <- data.frame(reducedDim(tse), colData(tse)) # cbind(umap_CRM_coor, concentration, medium, community)
for (res_conc_type in unique(concentration)){
for (com_type in unique(community)){
ave_dist <- average_distance(umap_CRM_coor, res_conc_type, com_type)
distance_saturation_data[nrow(distance_saturation_data)+1,] <-
c(res_conc_type, com_type, ave_dist)
}
}
# View(distance_saturation_data)
distance_saturation_data$average_distance <- as.numeric(distance_saturation_data$average_distance)
distance_saturation_data$concentration <- as.factor(distance_saturation_data$concentration)
distance_saturation_data$community <- as.factor(distance_saturation_data$community)
# distance_saturation_data_plot
p <- ggplot(distance_saturation_data,
aes(concentration, average_distance,
color = community,
group = community)) +
geom_line() +
geom_point() +
scale_shape_manual(values = c(0, 1, 2, 5, 6, 8, 15, 16, 17, 18)) +
labs(x = "Resource concentration",
y = "Average distance between communities in UMAP") +
theme_bw()
print(p)