DelayedTensor 1.6.0
Authors: Koki Tsuyuzaki [aut, cre]
Last modified: 2023-04-25 14:41:07.038824
Compiled: Tue Apr 25 16:52:49 2023
einsum
einsum
is an easy and intuitive way to write tensor operations.
It was originally introduced by
Numpy
1 https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
package of Python but similar tools have been implemented in other languages
(e.g. R, Julia) inspired by Numpy
.
In this vignette, we will use CRAN einsum package first.
einsum
is named after
Einstein summation2 https://en.wikipedia.org/wiki/Einstein_notation
introduced by Albert Einstein,
which is a notational convention that implies summation over
a set of indexed terms in a formula.
Here, we consider a simple example of einsum
; matrix multiplication.
If we naively implement the matrix multiplication,
the calculation would look like the following in a for loop.
A <- matrix(runif(3*4), nrow=3, ncol=4)
B <- matrix(runif(4*5), nrow=4, ncol=5)
C <- matrix(0, nrow=3, ncol=5)
I <- nrow(A)
J <- ncol(A)
K <- ncol(B)
for(i in 1:I){
for(j in 1:J){
for(k in 1:K){
C[i,k] = C[i,k] + A[i,j] * B[j,k]
}
}
}
Therefore, any programming language can implement this. However, when analyzing tensor data, such operations tend to be more complicated and increase the possibility of causing bugs because the order of tensors is larger or more tensors are handled simultaneously. In addition, several programming languages, especially R, are known to significantly slow down the speed of computation if the code is written in for loop.
Obviously, in the case of the R language, it should be executed using the built-in matrix multiplication function (%*%) prepared by the R, as shown below.
C <- A %*% B
However, more complex operations than matrix multiplication are not always provided by programming languages as standard.
einsum
is a function that solves such a problem.
To put it simply, einsum
is a wrapper for the for loop above.
Like the Einstein summation, it omits many notations such as for,
array size (e.g. I, J, and K), brackets (e.g. {}, (), and []),
and even addition operator (+) and
extracts the array subscripts (e.g. i, j, and k)
to concisely express the tensor operation as follows.
suppressPackageStartupMessages(library("einsum"))
C <- einsum('ij,jk->ik', A, B)
DelayedTensor
CRAN einsum is easy to use because the syntax is almost
the same as that of Numpy
‘s einsum
,
except that it prohibits the implicit modes that do not use’->’.
It is extremely fast because the internal calculation
is actually performed by C++.
When the input tensor is huge, however,
it is not scalable because it assumes that the input is R’s standard array.
Using einsum
of DelayedTensor,
we can augment the CRAN einsum
’s functionality;
in DelayedTensor,
the input DelayedArray objects are divided into
multiple block tensors and the CRAN einsum
is incremently applied in the block processing.
A surprisingly large number of tensor operations can be handled
uniformly in einsum
.
In more detail, einsum
is capable of performing any tensor operation
that can be described by a combination of the following
three operations3 https://ajcr.net/Basic-guide-to-einsum/.
Some typical operations are introduced below. Here we use the arrays and DelayedArray objects below.
suppressPackageStartupMessages(library("DelayedTensor"))
suppressPackageStartupMessages(library("DelayedArray"))
arrA <- array(runif(3), dim=c(3))
arrB <- array(runif(3*3), dim=c(3,3))
arrC <- array(runif(3*4), dim=c(3,4))
arrD <- array(runif(3*3*3), dim=c(3,3,3))
arrE <- array(runif(3*4*5), dim=c(3,4,5))
darrA <- DelayedArray(arrA)
darrB <- DelayedArray(arrB)
darrC <- DelayedArray(arrC)
darrD <- DelayedArray(arrD)
darrE <- DelayedArray(arrE)
If the same subscript is written on both sides of ->,
einsum
will simply output the object without any calculation.
einsum::einsum('i->i', arrA)
## [1] 0.4435179 0.2612365 0.1691130
DelayedTensor::einsum('i->i', darrA)
## <3> array of class DelayedArray and type "double":
## [1] [2] [3]
## 0.4435179 0.2612365 0.1691130
einsum::einsum('ij->ij', arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.2306521 0.5597838 0.6111953 0.2317208
## [2,] 0.5596185 0.8827677 0.6571940 0.5501385
## [3,] 0.6256027 0.7088709 0.6379488 0.3687220
DelayedTensor::einsum('ij->ij', darrC)
## <3 x 4> matrix of class DelayedArray and type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.2306521 0.5597838 0.6111953 0.2317208
## [2,] 0.5596185 0.8827677 0.6571940 0.5501385
## [3,] 0.6256027 0.7088709 0.6379488 0.3687220
einsum::einsum('ijk->ijk', arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.3941131 0.9341609 0.1456407 0.3450411
## [2,] 0.1669718 0.5141893 0.3516905 0.7500159
## [3,] 0.3027837 0.7690442 0.9640399 0.8668125
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.5636724 0.3606369 0.31591087 0.1523008
## [2,] 0.2043268 0.7859820 0.86592401 0.6572030
## [3,] 0.3297063 0.5692190 0.07859974 0.2063811
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6726905 0.4249505 0.7551751 0.6907411
## [2,] 0.5275158 0.7882609 0.2572507 0.9604261
## [3,] 0.1213238 0.4637394 0.6904535 0.8812318
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.4671706 0.3672498 0.3245687 0.7914497
## [2,] 0.2554462 0.6546781 0.2081990 0.7536588
## [3,] 0.4345269 0.3591480 0.9887159 0.5133280
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.6756489 0.7937759 0.03827615 0.6392523
## [2,] 0.1504246 0.9076869 0.86114266 0.6103908
## [3,] 0.9857722 0.7501000 0.21644762 0.7059945
DelayedTensor::einsum('ijk->ijk', darrE)
## <3 x 4 x 5> array of class DelayedArray and type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.3941131 0.9341609 0.1456407 0.3450411
## [2,] 0.1669718 0.5141893 0.3516905 0.7500159
## [3,] 0.3027837 0.7690442 0.9640399 0.8668125
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.56367245 0.36063694 0.31591087 0.15230084
## [2,] 0.20432677 0.78598197 0.86592401 0.65720303
## [3,] 0.32970635 0.56921899 0.07859974 0.20638113
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.6726905 0.4249505 0.7551751 0.6907411
## [2,] 0.5275158 0.7882609 0.2572507 0.9604261
## [3,] 0.1213238 0.4637394 0.6904535 0.8812318
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.4671706 0.3672498 0.3245687 0.7914497
## [2,] 0.2554462 0.6546781 0.2081990 0.7536588
## [3,] 0.4345269 0.3591480 0.9887159 0.5133280
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.67564890 0.79377592 0.03827615 0.63925226
## [2,] 0.15042456 0.90768685 0.86114266 0.61039081
## [3,] 0.98577219 0.75010002 0.21644762 0.70599451
We can also extract the diagonal elements as follows.
einsum::einsum('ii->i', arrB)
## [1] 0.848674765 0.005582589 0.622618967
DelayedTensor::einsum('ii->i', darrB)
## <3> array of class HDF5Array and type "double":
## [1] [2] [3]
## 0.848674765 0.005582589 0.622618967
einsum::einsum('iii->i', arrD)
## [1] 0.8355310 0.5134344 0.8110374
DelayedTensor::einsum('iii->i', darrD)
## <3> array of class HDF5Array and type "double":
## [1] [2] [3]
## 0.8355310 0.5134344 0.8110374
By using multiple arrays or DelayedArray objects as input and writing “,” on the right side of ->, multiplication will be performed.
Hadamard Product can also be implemented in einsum
,
multiplying by the product of each element.
einsum::einsum('i,i->i', arrA, arrA)
## [1] 0.19670811 0.06824449 0.02859921
DelayedTensor::einsum('i,i->i', darrA, darrA)
## <3> array of class HDF5Array and type "double":
## [1] [2] [3]
## 0.19670811 0.06824449 0.02859921
einsum::einsum('ij,ij->ij', arrC, arrC)
## [,1] [,2] [,3] [,4]
## [1,] 0.05320037 0.3133579 0.3735597 0.05369451
## [2,] 0.31317281 0.7792788 0.4319039 0.30265232
## [3,] 0.39137871 0.5024979 0.4069787 0.13595593
DelayedTensor::einsum('ij,ij->ij', darrC, darrC)
## <3 x 4> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3] [,4]
## [1,] 0.05320037 0.31335786 0.37355968 0.05369451
## [2,] 0.31317281 0.77927880 0.43190392 0.30265232
## [3,] 0.39137871 0.50249792 0.40697873 0.13595593
einsum::einsum('ijk,ijk->ijk', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.15532515 0.8726566 0.02121121 0.1190534
## [2,] 0.02787959 0.2643906 0.12368617 0.5625239
## [3,] 0.09167795 0.5914290 0.92937299 0.7513639
##
## , , 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.31772663 0.1300590 0.099799681 0.02319555
## [2,] 0.04174943 0.6177677 0.749824387 0.43191583
## [3,] 0.10870628 0.3240103 0.006177919 0.04259317
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.45251246 0.1805830 0.57028940 0.4771233
## [2,] 0.27827287 0.6213553 0.06617791 0.9224183
## [3,] 0.01471947 0.2150542 0.47672598 0.7765695
##
## , , 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.21824841 0.1348724 0.10534484 0.6263926
## [2,] 0.06525275 0.4286035 0.04334682 0.5680015
## [3,] 0.18881364 0.1289873 0.97755922 0.2635057
##
## , , 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.45650143 0.6300802 0.001465064 0.4086435
## [2,] 0.02262755 0.8238954 0.741566679 0.3725769
## [3,] 0.97174682 0.5626500 0.046849572 0.4984282
DelayedTensor::einsum('ijk,ijk->ijk', darrE, darrE)
## <3 x 4 x 5> array of class HDF5Array and type "double":
## ,,1
## [,1] [,2] [,3] [,4]
## [1,] 0.15532515 0.87265664 0.02121121 0.11905337
## [2,] 0.02787959 0.26439064 0.12368617 0.56252392
## [3,] 0.09167795 0.59142900 0.92937299 0.75136385
##
## ,,2
## [,1] [,2] [,3] [,4]
## [1,] 0.317726628 0.130059001 0.099799681 0.023195547
## [2,] 0.041749430 0.617767662 0.749824387 0.431915827
## [3,] 0.108706276 0.324010259 0.006177919 0.042593170
##
## ,,3
## [,1] [,2] [,3] [,4]
## [1,] 0.45251246 0.18058297 0.57028940 0.47712325
## [2,] 0.27827287 0.62135530 0.06617791 0.92241825
## [3,] 0.01471947 0.21505423 0.47672598 0.77656948
##
## ,,4
## [,1] [,2] [,3] [,4]
## [1,] 0.21824841 0.13487242 0.10534484 0.62639261
## [2,] 0.06525275 0.42860345 0.04334682 0.56800153
## [3,] 0.18881364 0.12898731 0.97755922 0.26350566
##
## ,,5
## [,1] [,2] [,3] [,4]
## [1,] 0.456501431 0.630080214 0.001465064 0.408643452
## [2,] 0.022627549 0.823895418 0.741566679 0.372576941
## [3,] 0.971746820 0.562650046 0.046849572 0.498428248
The outer product can also be implemented in einsum
,
in which the subscripts in the input array are all different,
and all of them are kept.
einsum::einsum('i,j->ij', arrA, arrA)
## [,1] [,2] [,3]
## [1,] 0.19670811 0.11586305 0.07500464
## [2,] 0.11586305 0.06824449 0.04417848
## [3,] 0.07500464 0.04417848 0.02859921
DelayedTensor::einsum('i,j->ij', darrA, darrA)
## <3 x 3> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3]
## [1,] 0.19670811 0.11586305 0.07500464
## [2,] 0.11586305 0.06824449 0.04417848
## [3,] 0.07500464 0.04417848 0.02859921
einsum::einsum('ij,klm->ijklm', arrC, arrE)
## , , 1, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0909030 0.2206181 0.2408801 0.09132419
## [2,] 0.2205530 0.3479103 0.2590088 0.21681679
## [3,] 0.2465582 0.2793753 0.2514240 0.14531819
##
## , , 2, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03851239 0.09346811 0.1020524 0.03869084
## [2,] 0.09344051 0.14739733 0.1097329 0.09185762
## [3,] 0.10445802 0.11836146 0.1065195 0.06156619
##
## , , 3, 1, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.06983767 0.1694934 0.1850600 0.07016126
## [2,] 0.16944333 0.2672876 0.1989876 0.16657294
## [3,] 0.18942227 0.2146345 0.1931605 0.11164301
##
## , , 1, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2154661 0.5229281 0.5709548 0.2164645
## [2,] 0.5227737 0.8246471 0.6139249 0.5139179
## [3,] 0.5844136 0.6621995 0.5959469 0.3444457
##
## , , 2, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1185988 0.2878348 0.3142701 0.1191483
## [2,] 0.2877498 0.4539097 0.3379221 0.2828753
## [3,] 0.3216782 0.3644938 0.3280265 0.1895929
##
## , , 3, 2, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1773816 0.4304985 0.4700362 0.1782035
## [2,] 0.4303713 0.6788874 0.5054112 0.4230808
## [3,] 0.4811161 0.5451530 0.4906109 0.2835635
##
## , , 1, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03359232 0.08152728 0.08901489 0.03374797
## [2,] 0.08150321 0.12856688 0.09571417 0.08012254
## [3,] 0.09111320 0.10324043 0.09291130 0.05370092
##
## , , 2, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08111812 0.1968706 0.2149515 0.08149398
## [2,] 0.19681247 0.3104610 0.2311288 0.19347844
## [3,] 0.22001849 0.2493031 0.2243605 0.12967602
##
## , , 3, 3, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2223578 0.5396539 0.5892167 0.2233881
## [2,] 0.5394945 0.8510233 0.6335612 0.5303554
## [3,] 0.6031060 0.6833798 0.6150082 0.3554628
##
## , , 1, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07958444 0.1931484 0.2108875 0.07995319
## [2,] 0.19309137 0.3045911 0.2267589 0.18982039
## [3,] 0.21585864 0.2445896 0.2201186 0.12722426
##
## , , 2, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1729927 0.4198467 0.4584062 0.1737943
## [2,] 0.4197228 0.6620899 0.4929060 0.4126126
## [3,] 0.4692120 0.5316645 0.4784718 0.2765474
##
## , , 3, 4, 1
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1999321 0.4852275 0.5297917 0.2008584
## [2,] 0.4850843 0.7651940 0.5696639 0.4768669
## [3,] 0.5422802 0.6144581 0.5529820 0.3196128
##
## , , 1, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1300122 0.3155347 0.3445139 0.1306146
## [2,] 0.3154415 0.4975918 0.3704421 0.3100979
## [3,] 0.3526350 0.3995710 0.3595942 0.2078384
##
## , , 2, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04712839 0.1143788 0.1248836 0.04734675
## [2,] 0.11434503 0.1803731 0.1342823 0.11240802
## [3,] 0.12782738 0.1448413 0.1303500 0.07533978
##
## , , 3, 1, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07604745 0.1845643 0.2015150 0.0763998
## [2,] 0.18450976 0.2910541 0.2166810 0.1813841
## [3,] 0.20626517 0.2337192 0.2103358 0.1215700
##
## , , 1, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08318165 0.2018787 0.2204196 0.08356706
## [2,] 0.20181909 0.3183586 0.2370084 0.19840025
## [3,] 0.22561543 0.2556450 0.2300679 0.13297478
##
## , , 2, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1812884 0.4399799 0.4803885 0.1821283
## [2,] 0.4398500 0.6938395 0.5165426 0.4323989
## [3,] 0.4917124 0.5571597 0.5014163 0.2898089
##
## , , 3, 2, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1312915 0.3186395 0.3479040 0.1318999
## [2,] 0.3185455 0.5024881 0.3740873 0.3131493
## [3,] 0.3561049 0.4035028 0.3631326 0.2098836
##
## , , 1, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07286549 0.1768418 0.1930832 0.07320311
## [2,] 0.17678955 0.2788759 0.2076147 0.17379472
## [3,] 0.19763469 0.2239400 0.2015350 0.11648330
##
## , , 2, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1997271 0.4847302 0.5292487 0.2006526
## [2,] 0.4845871 0.7644097 0.5690800 0.4763781
## [3,] 0.5417244 0.6138283 0.5524152 0.3192853
##
## , , 3, 3, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.01812919 0.04399886 0.04803979 0.01821319
## [2,] 0.04398587 0.06938531 0.05165528 0.04324074
## [3,] 0.04917221 0.05571707 0.05014261 0.02898146
##
## , , 1, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03512850 0.08525554 0.09308556 0.03529127
## [2,] 0.08523036 0.13444626 0.10009120 0.08378655
## [3,] 0.09527981 0.10796163 0.09716015 0.05615668
##
## , , 2, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1515852 0.3678916 0.4016794 0.1522876
## [2,] 0.3677829 0.5801576 0.4319099 0.3615527
## [3,] 0.4111480 0.4658721 0.4192619 0.2423252
##
## , , 3, 4, 2
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04760223 0.1155288 0.1261392 0.04782279
## [2,] 0.11549469 0.1821866 0.1356324 0.11353820
## [3,] 0.12911259 0.1462976 0.1316606 0.07609727
##
## , , 1, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1551574 0.3765612 0.4111452 0.1558763
## [2,] 0.3764500 0.5938294 0.4420881 0.3700729
## [3,] 0.4208370 0.4768507 0.4291421 0.2480358
##
## , , 2, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1216726 0.2952948 0.3224151 0.1222363
## [2,] 0.2952076 0.4656739 0.3466802 0.2902067
## [3,] 0.3300153 0.3739406 0.3365281 0.1945067
##
## , , 3, 1, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.02798359 0.06791510 0.07415255 0.02811325
## [2,] 0.06789505 0.10710075 0.07973328 0.06674490
## [3,] 0.07590051 0.08600292 0.07739839 0.04473477
##
## , , 1, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.09801572 0.2378804 0.2597278 0.09846986
## [2,] 0.23781017 0.3751326 0.2792749 0.23378164
## [3,] 0.26585020 0.3012351 0.2710967 0.15668863
##
## , , 2, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1818140 0.4412557 0.4817814 0.1826564
## [2,] 0.4411254 0.6958513 0.5180403 0.4336527
## [3,] 0.4931382 0.5587752 0.5028702 0.2906492
##
## , , 3, 2, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1069624 0.2595938 0.2834353 0.1074580
## [2,] 0.2595171 0.4093742 0.3047667 0.2551209
## [3,] 0.2901166 0.3287314 0.2958420 0.1709909
##
## , , 1, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1741827 0.4227347 0.4615595 0.1749897
## [2,] 0.4226099 0.6666442 0.4962965 0.4154509
## [3,] 0.4724396 0.5353216 0.4817631 0.2784497
##
## , , 2, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.0593354 0.1440048 0.1572304 0.05961032
## [2,] 0.1439622 0.2270926 0.1690636 0.14152349
## [3,] 0.1609367 0.1823575 0.1641128 0.09485399
##
## , , 3, 3, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1592545 0.3865046 0.4220019 0.1599924
## [2,] 0.3863905 0.6095100 0.4537619 0.3798450
## [3,] 0.4319495 0.4894424 0.4404740 0.2545854
##
## , , 1, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1593208 0.3866656 0.4221777 0.1600590
## [2,] 0.3865515 0.6097639 0.4539509 0.3800032
## [3,] 0.4321295 0.4896462 0.4406575 0.2546915
##
## , , 2, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2215242 0.5376309 0.5870079 0.2225507
## [2,] 0.5374722 0.8478331 0.6311862 0.5283673
## [3,] 0.6008451 0.6808181 0.6127027 0.3541303
##
## , , 3, 4, 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2032579 0.4932992 0.5386047 0.2041997
## [2,] 0.4931536 0.7779230 0.5791402 0.4847995
## [3,] 0.5513010 0.6246796 0.5621808 0.3249296
##
## , , 1, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1077539 0.2615145 0.2855325 0.1082531
## [2,] 0.2614373 0.4124032 0.3070217 0.2570085
## [3,] 0.2922632 0.3311637 0.2980310 0.1722561
##
## , , 2, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.05891919 0.1429946 0.1561275 0.05919218
## [2,] 0.14295240 0.2254996 0.1678777 0.14053077
## [3,] 0.15980782 0.1810784 0.1629616 0.09418864
##
## , , 3, 1, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1002245 0.2432411 0.2655808 0.1006889
## [2,] 0.2431693 0.3835863 0.2855685 0.2390500
## [3,] 0.2718412 0.3080235 0.2772059 0.1602196
##
## , , 1, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08470692 0.2055805 0.2244614 0.0850994
## [2,] 0.20551977 0.3241963 0.2413544 0.2020382
## [3,] 0.22975247 0.2603327 0.2342866 0.1354131
##
## , , 2, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1510029 0.3664782 0.4001362 0.1517025
## [2,] 0.3663700 0.5779287 0.4302505 0.3601636
## [3,] 0.4095684 0.4640823 0.4176512 0.2413942
##
## , , 3, 2, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.08283823 0.2010452 0.2195096 0.08322205
## [2,] 0.20098587 0.3170443 0.2360299 0.19758115
## [3,] 0.22468397 0.2545896 0.2291181 0.13242579
##
## , , 1, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.07486244 0.1816883 0.1983749 0.0752093
## [2,] 0.18163463 0.2865188 0.2133046 0.1785577
## [3,] 0.20305104 0.2300773 0.2070582 0.1196756
##
## , , 2, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04802152 0.1165464 0.1272502 0.04824403
## [2,] 0.11651199 0.1837913 0.1368271 0.11453827
## [3,] 0.13024984 0.1475862 0.1328203 0.07676755
##
## , , 3, 3, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2280494 0.5534671 0.6042985 0.2291060
## [2,] 0.5533037 0.8728065 0.6497782 0.5439307
## [3,] 0.6185433 0.7008719 0.6307502 0.3645613
##
## , , 1, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1825495 0.4430407 0.4837303 0.1833953
## [2,] 0.4429099 0.6986662 0.5201360 0.4354069
## [3,] 0.4951330 0.5610356 0.5049044 0.2918249
##
## , , 2, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1738329 0.4218859 0.4606327 0.1746384
## [2,] 0.4217613 0.6653056 0.4953000 0.4146167
## [3,] 0.4714909 0.5342467 0.4807957 0.2778906
##
## , , 3, 4, 4
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1184002 0.2873527 0.3137437 0.1189488
## [2,] 0.2872678 0.4531494 0.3373561 0.2824015
## [3,] 0.3211394 0.3638833 0.3274770 0.1892753
##
## , , 1, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1558398 0.3782173 0.4129534 0.1565619
## [2,] 0.3781056 0.5964410 0.4440324 0.3717004
## [3,] 0.4226878 0.4789478 0.4310294 0.2491266
##
## , , 2, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.03469573 0.08420523 0.09193878 0.03485649
## [2,] 0.08418036 0.13278994 0.09885812 0.08275434
## [3,] 0.09410601 0.10663159 0.09596318 0.05546485
##
## , , 3, 1, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2273704 0.5518193 0.6024993 0.2284239
## [2,] 0.5516563 0.8702078 0.6478435 0.5423112
## [3,] 0.6167017 0.6987852 0.6288722 0.3634759
##
## , , 1, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1830860 0.4443429 0.4851521 0.1839344
## [2,] 0.4442117 0.7007197 0.5216648 0.4366867
## [3,] 0.4965883 0.5626846 0.5063884 0.2926827
##
## , , 2, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.2093598 0.5081084 0.5547739 0.2103299
## [2,] 0.5079583 0.8012766 0.5965263 0.4993534
## [3,] 0.5678513 0.6434328 0.5790578 0.3346841
##
## , , 3, 2, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1730121 0.4198938 0.4584576 0.1738137
## [2,] 0.4197698 0.6621641 0.4929612 0.4126589
## [3,] 0.4692646 0.5317241 0.4785254 0.2765784
##
## , , 1, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.008828473 0.02142637 0.02339420 0.008869379
## [2,] 0.021420040 0.03378895 0.02515486 0.021057183
## [3,] 0.023945662 0.02713285 0.02441823 0.014113260
##
## , , 2, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1986243 0.4820537 0.5263263 0.1995446
## [2,] 0.4819113 0.7601889 0.5659378 0.4737477
## [3,] 0.5387332 0.6104390 0.5493650 0.3175223
##
## , , 3, 3, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.04992409 0.1211639 0.1322918 0.05015541
## [2,] 0.12112808 0.1910730 0.1422481 0.11907616
## [3,] 0.13541021 0.1534334 0.1380825 0.07980901
##
## , , 1, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1474448 0.3578430 0.3907080 0.1481280
## [2,] 0.3577374 0.5643112 0.4201127 0.3516773
## [3,] 0.3999179 0.4531473 0.4078102 0.2357064
##
## , , 2, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1407879 0.3416869 0.3730680 0.1414402
## [2,] 0.3415860 0.5388333 0.4011452 0.3357995
## [3,] 0.3818621 0.4326883 0.3893981 0.2250645
##
## , , 3, 4, 5
##
## [,1] [,2] [,3] [,4]
## [1,] 0.1628391 0.3952043 0.4315005 0.1635936
## [2,] 0.3950876 0.6232291 0.4639753 0.3883947
## [3,] 0.4416721 0.5004589 0.4503884 0.2603157
DelayedTensor::einsum('ij,klm->ijklm', darrC, darrE)
## <3 x 4 x 3 x 4 x 5> array of class HDF5Array and type "double":
## ,,1,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.09090300 0.22061813 0.24088009 0.09132419
## [2,] 0.22055298 0.34791033 0.25900877 0.21681679
## [3,] 0.24655823 0.27937532 0.25142401 0.14531819
##
## ,,2,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.03851239 0.09346811 0.10205239 0.03869084
## [2,] 0.09344051 0.14739733 0.10973287 0.09185762
## [3,] 0.10445802 0.11836146 0.10651948 0.06156619
##
## ,,3,1,1
## [,1] [,2] [,3] [,4]
## [1,] 0.06983767 0.16949338 0.18505995 0.07016126
## [2,] 0.16944333 0.26728764 0.19898760 0.16657294
## [3,] 0.18942227 0.21463452 0.19316049 0.11164301
##
## ...
##
## ,,1,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.1474448 0.3578430 0.3907080 0.1481280
## [2,] 0.3577374 0.5643112 0.4201127 0.3516773
## [3,] 0.3999179 0.4531473 0.4078102 0.2357064
##
## ,,2,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.1407879 0.3416869 0.3730680 0.1414402
## [2,] 0.3415860 0.5388333 0.4011452 0.3357995
## [3,] 0.3818621 0.4326883 0.3893981 0.2250645
##
## ,,3,4,5
## [,1] [,2] [,3] [,4]
## [1,] 0.1628391 0.3952043 0.4315005 0.1635936
## [2,] 0.3950876 0.6232291 0.4639753 0.3883947
## [3,] 0.4416721 0.5004589 0.4503884 0.2603157
If there is a vanishing subscript on the left or right side of ->, the summation is done for that subscript.
einsum::einsum('i->', arrA)
## [1] 0.8738674
DelayedTensor::einsum('i->', darrA)
## <1> array of class HDF5Array and type "double":
## [1]
## 0.8738674
einsum::einsum('ij->', arrC)
## [1] 6.624215
DelayedTensor::einsum('ij->', darrC)
## <1> array of class HDF5Array and type "double":
## [1]
## 6.624215
einsum::einsum('ijk->', arrE)
## [1] 32.28118
DelayedTensor::einsum('ijk->', darrE)
## <1> array of class HDF5Array and type "double":
## [1]
## 32.28118
einsum::einsum('ij->i', arrC)
## [1] 1.633352 2.649719 2.341144
DelayedTensor::einsum('ij->i', darrC)
## <3> array of class HDF5Array and type "double":
## [1] [2] [3]
## 1.633352 2.649719 2.341144
einsum::einsum('ij->j', arrC)
## [1] 1.415873 2.151422 1.906338 1.150581
DelayedTensor::einsum('ij->j', darrC)
## <4> array of class HDF5Array and type "double":
## [1] [2] [3] [4]
## 1.415873 2.151422 1.906338 1.150581
einsum::einsum('ijk->i', arrE)
## [1] 9.852426 11.231384 11.197368
DelayedTensor::einsum('ijk->i', darrE)
## <3> array of class HDF5Array and type "double":
## [1] [2] [3]
## 9.852426 11.231384 11.197368
einsum::einsum('ijk->j', arrE)
## [1] 6.252094 9.442822 7.062035 9.524228
DelayedTensor::einsum('ijk->j', darrE)
## <4> array of class HDF5Array and type "double":
## [1] [2] [3] [4]
## 6.252094 9.442822 7.062035 9.524228
einsum::einsum('ijk->k', arrE)
## [1] 6.504504 5.089863 7.233759 6.118140 7.334912
DelayedTensor::einsum('ijk->k', darrE)
## <5> array of class HDF5Array and type "double":
## [1] [2] [3] [4] [5]
## 6.504504 5.089863 7.233759 6.118140 7.334912
These are the same as what the modeSum
function does.
einsum::einsum('ijk->ij', arrE)
## [,1] [,2] [,3] [,4]
## [1,] 2.773296 2.880774 1.579571 2.618785
## [2,] 1.304685 3.650797 2.544207 3.731695
## [3,] 2.174113 2.911251 2.938257 3.173748
DelayedTensor::einsum('ijk->ij', darrE)
## <3 x 4> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3] [,4]
## [1,] 2.773296 2.880774 1.579571 2.618785
## [2,] 1.304685 3.650797 2.544207 3.731695
## [3,] 2.174113 2.911251 2.938257 3.173748
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8638686 1.097706 1.321530 1.157144 1.811846
## [2,] 2.2173944 1.715838 1.676951 1.381076 2.451563
## [3,] 1.4613711 1.260435 1.702879 1.521484 1.115866
## [4,] 1.9618695 1.015885 2.532399 2.058436 1.955638
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8638686 1.0977056 1.3215300 1.1571437 1.8118457
## [2,] 2.2173944 1.7158379 1.6769509 1.3810760 2.4515628
## [3,] 1.4613711 1.2604346 1.7028792 1.5214836 1.1158664
## [4,] 1.9618695 1.0158850 2.5323990 2.0584365 1.9556376
einsum::einsum('ijk->jk', arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8638686 1.097706 1.321530 1.157144 1.811846
## [2,] 2.2173944 1.715838 1.676951 1.381076 2.451563
## [3,] 1.4613711 1.260435 1.702879 1.521484 1.115866
## [4,] 1.9618695 1.015885 2.532399 2.058436 1.955638
DelayedTensor::einsum('ijk->jk', darrE)
## <4 x 5> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8638686 1.0977056 1.3215300 1.1571437 1.8118457
## [2,] 2.2173944 1.7158379 1.6769509 1.3810760 2.4515628
## [3,] 1.4613711 1.2604346 1.7028792 1.5214836 1.1158664
## [4,] 1.9618695 1.0158850 2.5323990 2.0584365 1.9556376
If we take the diagonal elements of a matrix
and add them together, we get trace
.
einsum::einsum('ii->', arrB)
## [1] 1.476876
DelayedTensor::einsum('ii->', darrB)
## <1> array of class HDF5Array and type "double":
## [1]
## 1.476876
By changing the order of the indices on the left and right side of ->, we can get a sorted array or DelayedArray.
einsum::einsum('ij->ji', arrB)
## [,1] [,2] [,3]
## [1,] 0.8486748 0.610428120 0.8016776
## [2,] 0.5055964 0.005582589 0.9735176
## [3,] 0.4763574 0.433875050 0.6226190
DelayedTensor::einsum('ij->ji', darrB)
## <3 x 3> matrix of class DelayedArray and type "double":
## [,1] [,2] [,3]
## [1,] 0.848674765 0.610428120 0.801677572
## [2,] 0.505596436 0.005582589 0.973517601
## [3,] 0.476357396 0.433875050 0.622618967
einsum::einsum('ijk->jki', arrD)
## , , 1
##
## [,1] [,2] [,3]
## [1,] 0.8355310 0.7260636 0.9468250
## [2,] 0.4983903 0.8234425 0.6118174
## [3,] 0.6909214 0.3490949 0.1348019
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 0.27195408 0.3570537 0.7993990
## [2,] 0.06854225 0.5134344 0.8875421
## [3,] 0.10257546 0.7728944 0.3233688
##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 0.2368680 0.3383344 0.5961123
## [2,] 0.0444261 0.3617052 0.6819026
## [3,] 0.5979155 0.3627868 0.8110374
DelayedTensor::einsum('ijk->jki', darrD)
## <3 x 3 x 3> array of class DelayedArray and type "double":
## ,,1
## [,1] [,2] [,3]
## [1,] 0.8355310 0.7260636 0.9468250
## [2,] 0.4983903 0.8234425 0.6118174
## [3,] 0.6909214 0.3490949 0.1348019
##
## ,,2
## [,1] [,2] [,3]
## [1,] 0.27195408 0.35705370 0.79939901
## [2,] 0.06854225 0.51343445 0.88754213
## [3,] 0.10257546 0.77289439 0.32336877
##
## ,,3
## [,1] [,2] [,3]
## [1,] 0.2368680 0.3383344 0.5961123
## [2,] 0.0444261 0.3617052 0.6819026
## [3,] 0.5979155 0.3627868 0.8110374
Some examples of combining Multiplication and Summation are shown below.
Inner Product first calculate Hadamard Product and collapses it to 0D tensor (norm).
einsum::einsum('i,i->', arrA, arrA)
## [1] 0.2935518
DelayedTensor::einsum('i,i->', darrA, darrA)
## <1> array of class HDF5Array and type "double":
## [1]
## 0.2935518
einsum::einsum('ij,ij->', arrC, arrC)
## [1] 4.057632
DelayedTensor::einsum('ij,ij->', darrC, darrC)
## <1> array of class HDF5Array and type "double":
## [1]
## 4.057632
einsum::einsum('ijk,ijk->', arrE, arrE)
## [1] 21.74186
DelayedTensor::einsum('ijk,ijk->', darrE, darrE)
## <1> array of class HDF5Array and type "double":
## [1]
## 21.74186
The inner product is an operation that eliminates all subscripts, while the outer product is an operation that leaves all subscripts intact. In the middle of the two, the operation that eliminates some subscripts while keeping others by summing them is called contracted product.
einsum::einsum('ijk,ijk->jk', arrE, arrE)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.2748827 0.4681823 0.7455048 0.4723148 1.4508758
## [2,] 1.7284763 1.0718369 1.0169925 0.6924632 2.0166257
## [3,] 1.0742704 0.8558020 1.1131933 1.1262509 0.7898813
## [4,] 1.4329411 0.4977045 2.1761110 1.4578998 1.2796486
DelayedTensor::einsum('ijk,ijk->jk', darrE, darrE)
## <4 x 5> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.2748827 0.4681823 0.7455048 0.4723148 1.4508758
## [2,] 1.7284763 1.0718369 1.0169925 0.6924632 2.0166257
## [3,] 1.0742704 0.8558020 1.1131933 1.1262509 0.7898813
## [4,] 1.4329411 0.4977045 2.1761110 1.4578998 1.2796486
Matrix Multiplication is considered a contracted product.
einsum::einsum('ij,jk->ik', arrC, t(arrC))
## [,1] [,2] [,3]
## [1,] 0.7938124 1.152389 1.016463
## [2,] 1.1523885 1.827008 1.597971
## [3,] 1.0164628 1.597971 1.436811
DelayedTensor::einsum('ij,jk->ik', darrC, t(darrC))
## <3 x 3> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3]
## [1,] 0.7938124 1.1523885 1.0164628
## [2,] 1.1523885 1.8270079 1.5979714
## [3,] 1.0164628 1.5979714 1.4368113
Some examples of combining Multiplication and Permutation are shown below.
einsum::einsum('ij,ij->ji', arrC, arrC)
## [,1] [,2] [,3]
## [1,] 0.05320037 0.3131728 0.3913787
## [2,] 0.31335786 0.7792788 0.5024979
## [3,] 0.37355968 0.4319039 0.4069787
## [4,] 0.05369451 0.3026523 0.1359559
DelayedTensor::einsum('ij,ij->ji', darrC, darrC)
## <4 x 3> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3]
## [1,] 0.05320037 0.31317281 0.39137871
## [2,] 0.31335786 0.77927880 0.50249792
## [3,] 0.37355968 0.43190392 0.40697873
## [4,] 0.05369451 0.30265232 0.13595593
einsum::einsum('ijk,ijk->jki', arrE, arrE)
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.15532515 0.31772663 0.4525125 0.2182484 0.456501431
## [2,] 0.87265664 0.13005900 0.1805830 0.1348724 0.630080214
## [3,] 0.02121121 0.09979968 0.5702894 0.1053448 0.001465064
## [4,] 0.11905337 0.02319555 0.4771233 0.6263926 0.408643452
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.02787959 0.04174943 0.27827287 0.06525275 0.02262755
## [2,] 0.26439064 0.61776766 0.62135530 0.42860345 0.82389542
## [3,] 0.12368617 0.74982439 0.06617791 0.04334682 0.74156668
## [4,] 0.56252392 0.43191583 0.92241825 0.56800153 0.37257694
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.09167795 0.108706276 0.01471947 0.1888136 0.97174682
## [2,] 0.59142900 0.324010259 0.21505423 0.1289873 0.56265005
## [3,] 0.92937299 0.006177919 0.47672598 0.9775592 0.04684957
## [4,] 0.75136385 0.042593170 0.77656948 0.2635057 0.49842825
DelayedTensor::einsum('ijk,ijk->jki', darrE, darrE)
## <4 x 5 x 3> array of class HDF5Array and type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.155325155 0.317726628 0.452512462 0.218248413 0.456501431
## [2,] 0.872656637 0.130059001 0.180582969 0.134872425 0.630080214
## [3,] 0.021211206 0.099799681 0.570289399 0.105344836 0.001465064
## [4,] 0.119053370 0.023195547 0.477123251 0.626392608 0.408643452
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.02787959 0.04174943 0.27827287 0.06525275 0.02262755
## [2,] 0.26439064 0.61776766 0.62135530 0.42860345 0.82389542
## [3,] 0.12368617 0.74982439 0.06617791 0.04334682 0.74156668
## [4,] 0.56252392 0.43191583 0.92241825 0.56800153 0.37257694
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.091677947 0.108706276 0.014719470 0.188813636 0.971746820
## [2,] 0.591429003 0.324010259 0.215054231 0.128987309 0.562650046
## [3,] 0.929372992 0.006177919 0.476725978 0.977559223 0.046849572
## [4,] 0.751363852 0.042593170 0.776569477 0.263505657 0.498428248
Some examples of combining Summation and Permutation are shown below.
einsum::einsum('ijk->ki', arrE)
## [,1] [,2] [,3]
## [1,] 1.818956 1.782868 2.902680
## [2,] 1.392521 2.513436 1.183906
## [3,] 2.543557 2.533453 2.156748
## [4,] 1.950439 1.871982 2.295719
## [5,] 2.146953 2.529645 2.658314
DelayedTensor::einsum('ijk->ki', darrE)
## <5 x 3> matrix of class HDF5Matrix and type "double":
## [,1] [,2] [,3]
## [1,] 1.818956 1.782868 2.902680
## [2,] 1.392521 2.513436 1.183906
## [3,] 2.543557 2.533453 2.156748
## [4,] 1.950439 1.871982 2.295719
## [5,] 2.146953 2.529645 2.658314
Finally, we will show a more complex example, combining Multiplication, Summation, and Permutation.
einsum::einsum('i,ij,ijk,ijk,ji->jki',
arrA, arrC, arrE, arrE, t(arrC))
## , , 1
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.003664946 0.0074968599 0.01067717 0.00514964 0.0107712951
## [2,] 0.121281657 0.0180755757 0.02509739 0.01874454 0.0875684308
## [3,] 0.003514281 0.0165348510 0.09448578 0.01745357 0.0002427323
## [4,] 0.002835193 0.0005523898 0.01136244 0.01491721 0.0097316291
##
## , , 2
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.002280889 0.003415611 0.022766105 0.005338469 0.001851209
## [2,] 0.053823601 0.125762698 0.126493055 0.087253396 0.167725372
## [3,] 0.013955394 0.084601978 0.007466791 0.004890780 0.083670268
## [4,] 0.044475294 0.034148918 0.072929916 0.044908374 0.029457358
##
## , , 3
##
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.006067909 0.0071949673 0.0009742409 0.01249705 0.06431723
## [2,] 0.050259006 0.0275340463 0.0182750793 0.01096120 0.04781340
## [3,] 0.063964464 0.0004251978 0.0328108542 0.06728090 0.00322444
## [4,] 0.017275295 0.0009792986 0.0178548205 0.00605850 0.01145982
DelayedTensor::einsum('i,ij,ijk,ijk,ji->jki',
darrA, darrC, darrE, darrE, t(darrC))
## <4 x 5 x 3> array of class HDF5Array and type "double":
## ,,1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0036649460 0.0074968599 0.0106771741 0.0051496401 0.0107712951
## [2,] 0.1212816569 0.0180755757 0.0250973875 0.0187445445 0.0875684308
## [3,] 0.0035142811 0.0165348510 0.0944857755 0.0174535746 0.0002427323
## [4,] 0.0028351934 0.0005523898 0.0113624395 0.0149172108 0.0097316291
##
## ,,2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.002280889 0.003415611 0.022766105 0.005338469 0.001851209
## [2,] 0.053823601 0.125762698 0.126493055 0.087253396 0.167725372
## [3,] 0.013955394 0.084601978 0.007466791 0.004890780 0.083670268
## [4,] 0.044475294 0.034148918 0.072929916 0.044908374 0.029457358
##
## ,,3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.0060679094 0.0071949673 0.0009742409 0.0124970515 0.0643172303
## [2,] 0.0502590061 0.0275340463 0.0182750793 0.0109612040 0.0478134010
## [3,] 0.0639644642 0.0004251978 0.0328108542 0.0672809006 0.0032244404
## [4,] 0.0172752949 0.0009792986 0.0178548205 0.0060585000 0.0114598206
einsum
By using einsum
and other DelayedTensor functions,
it is possible to implement your original tensor calculation functions.
It is intended to be applied to Delayed Arrays,
which can scale to large-scale data
since the calculation is performed internally by block processing.
For example, kronecker
can be easily implmented by eimsum
and other DelayedTensor functions4 https://stackoverflow.com/
questions/56067643/speeding-up-kronecker-products-numpy
(the kronecker
function inside DelayedTensor
has a more efficient implementation though).
darr1 <- DelayedArray(array(1:6, dim=c(2,3)))
darr2 <- DelayedArray(array(20:1, dim=c(4,5)))
mykronecker <- function(darr1, darr2){
stopifnot((length(dim(darr1)) == 2) && (length(dim(darr2)) == 2))
# Outer Product
tmpdarr <- DelayedTensor::einsum('ij,kl->ikjl', darr1, darr2)
# Reshape
DelayedTensor::unfold(tmpdarr, row_idx=c(2,1), col_idx=c(4,3))
}
identical(as.array(DelayedTensor::kronecker(darr1, darr2)),
as.array(mykronecker(darr1, darr2)))
## [1] TRUE
## R version 4.3.0 RC (2023-04-13 r84269)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 22.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.17-bioc/R/lib/libRblas.so
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## time zone: America/New_York
## tzcode source: system (glibc)
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] einsum_0.1.0 DelayedRandomArray_1.8.0 HDF5Array_1.28.0
## [4] rhdf5_2.44.0 DelayedArray_0.26.0 IRanges_2.34.0
## [7] S4Vectors_0.38.0 MatrixGenerics_1.12.0 matrixStats_0.63.0
## [10] BiocGenerics_0.46.0 Matrix_1.5-4 DelayedTensor_1.6.0
## [13] BiocStyle_2.28.0
##
## loaded via a namespace (and not attached):
## [1] jsonlite_1.8.4 compiler_4.3.0 BiocManager_1.30.20
## [4] Rcpp_1.0.10 rsvd_1.0.5 rhdf5filters_1.12.0
## [7] parallel_4.3.0 jquerylib_0.1.4 BiocParallel_1.34.0
## [10] yaml_2.3.7 fastmap_1.1.1 lattice_0.21-8
## [13] R6_2.5.1 ScaledMatrix_1.8.0 knitr_1.42
## [16] bookdown_0.33 bslib_0.4.2 rlang_1.1.0
## [19] cachem_1.0.7 xfun_0.39 sass_0.4.5
## [22] cli_3.6.1 Rhdf5lib_1.22.0 BiocSingular_1.16.0
## [25] digest_0.6.31 grid_4.3.0 irlba_2.3.5.1
## [28] rTensor_1.4.8 dqrng_0.3.0 evaluate_0.20
## [31] codetools_0.2-19 beachmat_2.16.0 rmarkdown_2.21
## [34] tools_4.3.0 htmltools_0.5.5