K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 950 818 238 51 481 615 489 659 320 63 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  950  390  333  161  363  316  326  545  923   842
##  [2,]  818  687  518  133  742  291   86  677  149   621
##  [3,]  238  515  697  546  523  872  403  448  782   863
##  [4,]   51  276  272  816  826  723  168  481  391   517
##  [5,]  481  937  758  489  390  447  394  388  170   666
##  [6,]  615  828  658  116  790  763  782  332  577   489
##  [7,]  489  582  171  843  673  948  272  869  137   683
##  [8,]  659  211  881  503   98  746  405  863  448    47
##  [9,]  320  272  866  835  869  817  170   65   71   350
## [10,]   63  375  515  332  730  403  392  238  272   336
## [11,]  362  778  452   50  478   60  189  529  744   646
## [12,]  975  717  797  271  263  219  987  997  126   722
## [13,]  693  362  728  747  275  498  452  478  711   801
## [14,]  550  805  822  945  294  996  566  429  329   189
## [15,]  537  426  270  438  726  928   82  500  916   874
## [16,]  362  296  899  747   36  510   50  634  961   532
## [17,]   77  927  118  194  382  767  786  360  472   830
## [18,]  789   27  524  442  615  937    9    1  363   476
## [19,]  116  782  790  616  234  615  976  497  868   127
## [20,]  323  192  659  466  308  934  488   66  544   879
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 2.45 3.18 2.78 2.81 3.97 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 2.453201 2.470231 3.191709 3.218411 3.255873 3.343012 3.402697 3.412175
##  [2,] 3.177718 3.300765 3.383804 3.415477 3.494288 3.496798 3.540498 3.576874
##  [3,] 2.781966 2.911382 2.957198 2.970242 2.995856 3.075129 3.125124 3.128377
##  [4,] 2.811794 3.320573 3.399586 3.465319 3.472019 3.478667 3.552670 3.595827
##  [5,] 3.970646 4.014822 4.082931 4.087671 4.093826 4.171065 4.193373 4.228592
##  [6,] 3.092417 3.111860 3.183026 3.218674 3.278997 3.310448 3.358336 3.567453
##  [7,] 2.300343 2.532541 2.760352 2.955509 3.040854 3.043363 3.057087 3.124119
##  [8,] 5.288472 5.367204 5.700925 5.806172 5.835787 6.070138 6.166682 6.210533
##  [9,] 2.907990 3.287269 3.315326 3.349961 3.494212 3.543102 3.634984 3.726571
## [10,] 2.709808 2.728091 2.750523 2.860145 2.894769 2.954442 2.969913 2.979683
## [11,] 3.969115 4.034457 4.039353 4.048233 4.084207 4.138196 4.142253 4.180874
## [12,] 3.133915 3.417192 3.529116 3.966638 4.099818 4.140183 4.164315 4.520699
## [13,] 3.129159 3.622966 3.693368 3.882383 3.936580 3.937566 3.948989 4.009144
## [14,] 3.415029 3.443344 3.511060 3.611068 4.090203 4.175512 4.259924 4.275730
## [15,] 3.311876 3.492138 3.594279 3.697607 3.867315 3.873742 3.918866 4.059805
## [16,] 2.867010 3.045342 3.204341 3.214327 3.572627 3.637745 3.643436 3.653801
## [17,] 4.130807 4.188286 4.253292 4.293531 4.321129 4.331707 4.338776 4.366374
## [18,] 3.385651 3.815453 3.898912 3.950120 4.046524 4.082604 4.094249 4.119896
## [19,] 2.501066 2.623459 2.723471 2.885968 2.926205 2.963436 3.178326 3.184604
## [20,] 3.182050 3.419672 3.429446 3.640109 4.052769 4.108694 4.379979 4.421793
##           [,9]    [,10]
##  [1,] 3.433905 3.494258
##  [2,] 3.584747 3.617330
##  [3,] 3.196968 3.197360
##  [4,] 3.601996 3.707303
##  [5,] 4.264294 4.268515
##  [6,] 3.574648 3.579448
##  [7,] 3.124713 3.134375
##  [8,] 6.259396 6.268555
##  [9,] 3.767352 3.864313
## [10,] 3.063120 3.069113
## [11,] 4.193828 4.197303
## [12,] 4.595665 4.611223
## [13,] 4.104012 4.148727
## [14,] 4.358250 4.400418
## [15,] 4.181931 4.191853
## [16,] 3.696293 3.702478
## [17,] 4.398688 4.662700
## [18,] 4.134622 4.151868
## [19,] 3.214041 3.221525
## [20,] 4.455717 4.482405

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    `pCrkL(Lu175)Di.IL7.qvalue` pCREB(Yb176)Di.IL7.qvalu…¹ pBTK(Yb171)Di.IL7.qv…²
##                          <dbl>                      <dbl>                  <dbl>
##  1                       1                          0.887                  0.688
##  2                       0.722                      0.926                  0.855
##  3                       0.902                      0.887                  0.891
##  4                       0.912                      0.884                  0.396
##  5                       1                          1                      0.985
##  6                       0.945                      0.853                  0.812
##  7                       0.897                      0.926                  0.342
##  8                       0.949                      0.913                  0.973
##  9                       1                          0.884                  0.776
## 10                       0.912                      0.853                  0.701
## # ℹ 990 more rows
## # ℹ abbreviated names: ¹​`pCREB(Yb176)Di.IL7.qvalue`,
## #   ²​`pBTK(Yb171)Di.IL7.qvalue`
## # ℹ 31 more variables: `pS6(Yb172)Di.IL7.qvalue` <dbl>,
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>, `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(In113)Di`
##             <dbl>          <dbl>          <dbl>                    <dbl>
##  1       -0.138       -0.0650          -0.152                     -1.10 
##  2       -0.00742     -0.533           -0.410                     -0.736
##  3       -1.06        -0.558           -1.19                      -1.37 
##  4       -0.302       -0.671           -1.29                      -1.11 
##  5       -0.191       -0.263           -0.250                     -0.303
##  6       -0.887       -0.329           -0.459                     -0.982
##  7       -0.652       -0.114           -0.761                     -0.693
##  8       -0.0398      -0.0000977       -0.615                     -0.474
##  9       -0.0416      -0.182           -0.232                     -1.03 
## 10       -0.00766     -0.464            0.00117                    0.524
## # ℹ 20 more rows
## # ℹ 47 more variables: `CD3(Cd114)Di` <dbl>, `CD45(In115)Di` <dbl>,
## #   `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>, `IgD(Nd145)Di` <dbl>,
## #   `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>,
## #   `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>,
## #   `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>,
## #   `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.285 0.269 0.304 0.266 0.229 ...