Single-cell RNA sequencing has become a common approach to trace developmental processes of cells, however, using exogenous barcodes is more direct than predicting from expression profiles recently, based on that, as gene-editing technology matures, combining this technological method with exogenous barcodes can generate more complex dynamic information for single-cell. In this application note, we introduce an R package: LinTInd for reconstructing a tree from alleles generated by the genome-editing tool known as CRISPR for a moderate time period based on the order in which editing occurs, and for sc-RNA seq, ScarLin can also quantify the similarity between each cluster in three ways.
Via GitHub
devtools::install_github("mana-W/LinTInd")
Via Bioconductor
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("LinTInd")
library(LinTInd)
The input for LinTInd consists three required files:
and an optional file:
data<-paste0(system.file("extdata",package = 'LinTInd'),"/CB_UMI")
fafile<-paste0(system.file("extdata",package = 'LinTInd'),"/V3.fasta")
cutsite<-paste0(system.file("extdata",package = 'LinTInd'),"/V3.cutSites")
celltype<-paste0(system.file("extdata",package = 'LinTInd'),"/celltype.tsv")
data<-read.table(data,sep="\t",header=TRUE)
ref<-ReadFasta(fafile)
cutsite<-read.table(cutsite,col.names = c("indx","start","end"))
celltype<-read.table(celltype,header=TRUE,stringsAsFactors=FALSE)
For the sequence file, only the column contain reads’ strings is requeired, the cell barcodes and UMIs are both optional.
head(data,3)
## Read.ID
## 1 @A01045:289:HM7K3DRXX:2:2101:9896:1031
## 2 @A01045:289:HM7K3DRXX:2:2101:13367:1031
## 3 @A01045:289:HM7K3DRXX:2:2101:9959:1047
## Read.Seq
## 1 GAACGCGTAGGATAACATGGCCATCATCAAGGAGTTCTCATGCGCTTCAAGGTGCACATGGTTTATTGGAGCCGTACATGAACTGAGGTTAAGGACAGGATGTCCCAGGCGTAGGTAATTGGCCCCCTGCCCTTCGCCTGGGTTATAAGCTTCGGGTTTAAACGGGCCCTGGGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTC
## 2 GAACGCGTAGGATAACATGGCCATCATCAAGGAGTTCTCATGCGCTTCAAGGTGCACATGGTTTATTGGAGCCGTACATGAACTGAGGTTAAGGACAGGATGTCCCAGGCGTAGGTAATTGGCCCCCTGCCCTTCGCCTGGGTTATAAGCTTCGGGTTTAAACGGGCCCTGGGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTC
## 3 GAACGCGTAGGATAACATGGCCATCATCAAGGAGTTCTCATGCGCTTCAAGGTGCACATGGTTTATTGGAGCCGTACATGAACTGAGGTTAAGGACAGGATGTCCCAGGCGTAGGTAATTGGCCCCCTGCCCTTCGCCTGGGTTATAAGCTTCGGGTTTAAACGGGCCCTGGGGGTGGCATCCCTGTGACCCCTCCCCAGTGCCTCTCCTGGCCCTGGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTC
## Cell.BC UMI
## 1 GAAGGGTAGCCTCAGC CTTCTCCCGA
## 2 ACCCTCACAAGACTGG TGTAATTTTT
## 3 GAAGGGTAGCCTCAGC CTTCTCCCGA
ref
## $scarfull
## 333-letter DNAString object
## seq: GAACGCGTAGGATAACATGGCCATCATCAAGGAGTT...GGAAGTTGCCACTCCAGTGCCCACCAGCCTTGTCCT
cutsite
## indx start end
## 1 0 39 267
## 2 1 1 23
## 3 2 28 50
## 4 3 55 77
## 5 4 82 104
## 6 5 109 131
## 7 6 136 158
## 8 7 163 185
head(celltype,3)
## Cell.BC Cell.type
## 1 AAGCGAGTCTTCTGTA A
## 2 AATCGACTCGTAGTGT A
## 3 ACATGCAGTCCACACG A
In the first step, we shold use FindIndel()
to alignment and find indels, and the function IndelForm()
will help us to generate an array-form string for each read.
scarinfo<-FindIndel(data=data,scarfull=ref,scar=cutsite,indel.coverage="All",type="test",cln=1)
scarinfo<-IndelForm(scarinfo,cln=1)
Then for single-cell sequencing, we shold define a final-version of array-form string for each cell use IndelIdents()
, there are three method are provided :
For bulk sequencing, in this step, we will generate a “cell barcode” for each read.
cellsinfo<-IndelIdents(scarinfo,method.use="umi.num",cln=1)
After define the indels for each cell, we can use IndelPlot()
to visualise them.
IndelPlot(cellsinfo = cellsinfo)
We can use the function TagProcess()
to extract indels for cells/reads. The parameter Cells is optional.
tag<-TagProcess(cellsinfo$info,Cells=celltype)
And if the annotation of each cells are provided, we can also use TagDist()
to calculate the relationship between each group in three way:
The heatmap of this result will be saved as a pdf file.
tag_dist=TagDist(tag,method = "Jaccard")
## Using Cell.type as value column: use value.var to override.
## Aggregation function missing: defaulting to length
tag_dist
## A B C D E
## A 1.0000000 0.4925373 0.2794118 0.2985075 0.2058824
## B 0.4925373 1.0000000 0.5588235 0.6060606 0.4117647
## C 0.2794118 0.5588235 1.0000000 0.9047619 0.7500000
## D 0.2985075 0.6060606 0.9047619 1.0000000 0.6666667
## E 0.2058824 0.4117647 0.7500000 0.6666667 1.0000000
In the laste part, we can use BuildTree()
to Generate an array generant tree.
treeinfo<-BuildTree(tag)
## Using Cell.num as value column: use value.var to override.
Finally, we can use the function PlotTree()
to visualise the tree created before.
plotinfo<-PlotTree(treeinfo = treeinfo,data.extract = "TRUE",annotation = "TRUE")
## Using tags as id variables
plotinfo$p
sessionInfo()
## R version 4.2.1 (2022-06-23)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] LinTInd_1.2.0 S4Vectors_0.36.0 BiocGenerics_0.44.0
## [4] ggplot2_3.3.6
##
## loaded via a namespace (and not attached):
## [1] sass_0.4.2 tidyr_1.2.1 jsonlite_1.8.3
## [4] bslib_0.4.0 assertthat_0.2.1 highr_0.9
## [7] yulab.utils_0.0.5 GenomeInfoDbData_1.2.9 yaml_2.3.6
## [10] pillar_1.8.1 lattice_0.20-45 glue_1.6.2
## [13] rlist_0.4.6.2 digest_0.6.30 RColorBrewer_1.1-3
## [16] XVector_0.38.0 colorspace_2.0-3 ggfun_0.0.7
## [19] cowplot_1.1.1 htmltools_0.5.3 plyr_1.8.7
## [22] ggnewscale_0.4.8 pkgconfig_2.0.3 pheatmap_1.0.12
## [25] zlibbioc_1.44.0 purrr_0.3.5 patchwork_1.1.2
## [28] tidytree_0.4.1 scales_1.2.1 ggplotify_0.1.0
## [31] stringdist_0.9.9 tibble_3.1.8 generics_0.1.3
## [34] farver_2.1.1 IRanges_2.32.0 cachem_1.0.6
## [37] withr_2.5.0 lazyeval_0.2.2 cli_3.4.1
## [40] magrittr_2.0.3 crayon_1.5.2 evaluate_0.17
## [43] data.tree_1.0.0 fansi_1.0.3 nlme_3.1-160
## [46] tools_4.2.1 data.table_1.14.4 lifecycle_1.0.3
## [49] stringr_1.4.1 aplot_0.1.8 ggtree_3.6.0
## [52] munsell_0.5.0 Biostrings_2.66.0 networkD3_0.4
## [55] compiler_4.2.1 jquerylib_0.1.4 GenomeInfoDb_1.34.0
## [58] gridGraphics_0.5-1 rlang_1.0.6 grid_4.2.1
## [61] RCurl_1.98-1.9 htmlwidgets_1.5.4 igraph_1.3.5
## [64] bitops_1.0-7 labeling_0.4.2 rmarkdown_2.17
## [67] gtable_0.3.1 DBI_1.1.3 reshape2_1.4.4
## [70] R6_2.5.1 knitr_1.40 dplyr_1.0.10
## [73] fastmap_1.1.0 utf8_1.2.2 treeio_1.22.0
## [76] ape_5.6-2 stringi_1.7.8 Rcpp_1.0.9
## [79] vctrs_0.5.0 tidyselect_1.2.0 xfun_0.34