K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"           "CD3(Cd112)Di"          
##  [4] "CD235-61-7-15(In113)Di" "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"          "IgD(Nd145)Di"          
## [10] "CD79b(Nd146)Di"         "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"          "IgM(Eu153)Di"          
## [16] "Kappa(Sm154)Di"         "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"           "Rag1(Dy164)Di"         
## [22] "PreBCR(Ho165)Di"        "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"          "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"   "pS6(Yb172)Di"   
##  [5] "cPARP(La139)Di"  "pPLCg2(Pr141)Di" "pSrc(Nd144)Di"   "Ki67(Sm152)Di"  
##  [9] "pErk12(Gd155)Di" "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"   "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 984 309 792 46 402 608 468 478 859 95 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  984  479  470  402  430   22   79  782  246   422
##  [2,]  309   25  871  725  249  306  727  718  285   801
##  [3,]  792  170   53  496  943   93  913  994  233   374
##  [4,]   46  176  336  672   75  139  793  897  885   395
##  [5,]  402  782  519   19  703  873  350   79  974   659
##  [6,]  608  928  705  706  683   32  785  311  894   878
##  [7,]  468  376  802  532  620  858  163  795  922   186
##  [8,]  478  805  843  480  341  202  401  312  666   536
##  [9,]  859  746  483  801  813  492  593  662  456   721
## [10,]   95  480  133  668  221  824  314  371  748   806
## [11,]  657  350   19  240  932  467  782  659  873   771
## [12,]   82  604   30  531  133  988  381  465  625   221
## [13,]  613   49  883  563  569  228  196  900  665   991
## [14,]  480  506  221  401  941  776  536  919  806   542
## [15,]  512  947  578  490  716  946  322  259  805   463
## [16,]  941  946  688  335  480  759  976  742  202   133
## [17,]  718  261  191  206  645  276  229  101  249   879
## [18,]  956  545  684  666  301  264  677  748  204   133
## [19,]  350  782  519    5   11  643  657  404  974   703
## [20,]  688  312  463   52  493  536  255  962  843   929
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.18 2.56 4.13 4.19 2.18 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
##  [1,] 3.179104 3.239590 3.322334 3.382186 3.561743 3.615391 3.683914 3.707063
##  [2,] 2.564155 3.339232 3.387191 3.678814 3.740663 3.741770 3.782321 3.816347
##  [3,] 4.133917 4.296035 4.413266 4.472787 4.535665 4.657785 4.779627 4.838354
##  [4,] 4.187657 4.861884 4.928534 5.385785 5.426930 5.471035 5.476611 5.510139
##  [5,] 2.183445 2.467871 2.548933 2.564574 2.624695 2.656266 2.873438 2.956495
##  [6,] 3.211137 3.639487 3.983039 4.199958 4.844523 4.884269 4.924772 4.977026
##  [7,] 4.031615 4.159029 4.328804 4.364631 4.475063 4.528031 4.559770 4.573801
##  [8,] 2.314570 2.990672 3.058306 3.058458 3.158027 3.190994 3.192741 3.264128
##  [9,] 4.205782 4.536892 4.615946 4.721329 4.746571 4.776526 4.826832 4.897551
## [10,] 3.270726 3.315812 3.326392 3.330879 3.334825 3.362373 3.362938 3.382394
## [11,] 2.187504 2.723375 2.789527 2.865358 2.904483 2.960871 2.967851 2.998460
## [12,] 3.190382 3.202113 3.305286 3.333369 3.365734 3.418780 3.493082 3.495900
## [13,] 4.924318 4.983522 5.001183 5.035517 5.066946 5.197326 5.248303 5.323472
## [14,] 2.848022 2.975231 3.049587 3.056745 3.233157 3.299841 3.302737 3.303199
## [15,] 2.804204 2.983640 3.119714 3.145059 3.161211 3.163343 3.225933 3.250238
## [16,] 2.749829 2.818448 2.873100 2.930088 2.979536 3.162047 3.172413 3.219628
## [17,] 4.241363 4.277992 4.333221 4.350494 4.360575 4.372952 4.381893 4.414951
## [18,] 2.943314 3.074297 3.172212 3.197729 3.343889 3.355104 3.387417 3.398580
## [19,] 2.134410 2.478696 2.560700 2.564574 2.789527 2.793614 2.854047 2.858374
## [20,] 3.241488 3.243865 3.301564 3.325852 3.361672 3.375413 3.432257 3.436741
##           [,9]    [,10]
##  [1,] 3.796854 3.821455
##  [2,] 3.825843 3.848661
##  [3,] 4.927379 4.952781
##  [4,] 5.662498 5.697991
##  [5,] 3.022827 3.027098
##  [6,] 5.053909 5.091078
##  [7,] 4.588397 4.624760
##  [8,] 3.323551 3.338076
##  [9,] 4.919758 5.023818
## [10,] 3.433720 3.470568
## [11,] 3.010996 3.019052
## [12,] 3.524951 3.534038
## [13,] 5.437753 5.446464
## [14,] 3.312834 3.324134
## [15,] 3.262286 3.352786
## [16,] 3.285046 3.290347
## [17,] 4.441140 4.554148
## [18,] 3.422021 3.432248
## [19,] 2.874898 2.880039
## [20,] 3.439791 3.451233

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 × 34
##    pCrkL(Lu175…¹ pCREB…² pBTK(…³ pS6(Y…⁴ cPARP…⁵ pPLCg…⁶ pSrc(…⁷ Ki67(…⁸ pErk1…⁹
##            <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>   <dbl>
##  1             1   0.986   0.989   1       0.977       1  0.521    0.809   0.984
##  2             1   0.972   0.989   0.885   0.950       1  0.788    0.932   0.984
##  3             1   0.972   0.989   0.989   1           1  0.900    0.639   0.984
##  4             1   0.972   0.989   0.987   0.918       1  0.802    0.936   0.984
##  5             1   0.972   0.989   0.987   0.825       1  0.462    0.541   0.997
##  6             1   0.986   0.989   0.987   0.950       1  0.788    0.883   0.984
##  7             1   0.929   0.989   0.917   0.908       1  0.0487   0.817   0.984
##  8             1   0.972   0.989   1       0.856       1  0.939    0.842   0.984
##  9             1   0.972   1       1       0.825       1  0.659    0.641   0.984
## 10             1   0.986   0.989   0.987   0.825       1  0.848    1       0.958
## # … with 990 more rows, 25 more variables: `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>,
## #   `pAKT(Tb159)Di.IL7.qvalue` <dbl>, `pBLNK(Gd160)Di.IL7.qvalue` <dbl>,
## #   `pP38(Tm169)Di.IL7.qvalue` <dbl>, `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>,
## #   `pSyk(Dy162)Di.IL7.qvalue` <dbl>, `tIkBa(Er166)Di.IL7.qvalue` <dbl>,
## #   `pCrkL(Lu175)Di.IL7.change` <dbl>, `pCREB(Yb176)Di.IL7.change` <dbl>,
## #   `pBTK(Yb171)Di.IL7.change` <dbl>, `pS6(Yb172)Di.IL7.change` <dbl>,
## #   `cPARP(La139)Di.IL7.change` <dbl>, `pPLCg2(Pr141)Di.IL7.change` <dbl>, …

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 × 51
##    CD3(Cd110…¹ CD3(C…² CD3(C…³ CD235…⁴ CD3(Cd…⁵ CD45(…⁶ CD19(…⁷ CD22(…⁸ IgD(Nd…⁹
##          <dbl>   <dbl>   <dbl>   <dbl>    <dbl>   <dbl>   <dbl>   <dbl>    <dbl>
##  1     -0.409  -0.277  -0.137   -1.11  -0.331      2.72    1.61   0.727  0.474  
##  2     -0.199  -0.0196  0.0463  -1.03  -0.426      2.36    2.70   0.254 -0.00295
##  3     -0.446  -0.204  -0.0761  -0.996 -0.288      3.41    2.07   0.841  0.0288 
##  4     -0.411  -0.160  -0.219   -0.816 -0.224      3.65    1.92  -0.203 -0.158  
##  5     -0.0815 -0.437   0.363   -2.20  -0.251      2.63    2.21  -0.354 -0.182  
##  6     -0.245  -0.291  -0.306   -1.09  -0.166      2.78    2.21  -0.251 -0.141  
##  7     -0.460  -0.201  -0.460   -0.741 -0.511      2.51    2.29  -0.116  0.185  
##  8      0.0465 -0.0188 -0.146   -1.15  -0.00510    3.02    1.82   0.287  0.416  
##  9     -0.0258 -0.0935 -0.234   -1.74  -0.435      3.53    2.29  -0.188 -0.130  
## 10     -0.234  -0.0953 -0.451   -0.721 -0.393      1.78    2.09   0.426 -0.0725 
## # … with 20 more rows, 42 more variables: `CD79b(Nd146)Di` <dbl>,
## #   `CD20(Sm147)Di` <dbl>, `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>,
## #   `CD72(Eu151)Di` <dbl>, `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>,
## #   `CD10(Gd156)Di` <dbl>, `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>,
## #   `TdT(Dy163)Di` <dbl>, `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>,
## #   `CD43(Er167)Di` <dbl>, `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>,
## #   `CD33(Yb173)Di` <dbl>, `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, …
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.259 0.255 0.199 0.173 0.329 ...