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1 Introduction

Heterogeneous tissues are frequently collected (e.g. blood, tumor etc.) from
humans or model animals. Therefore mRNA-Seq samples are often heteroge-
neous with regard to those cell types, which render it difficult to distinguish
whether gene expression variation reflects a shift in cell populations, a change
of cell-type-specific expression, or both ([1]).

In this vignette, we present an efficient pipeline and methodology: Decon-
RNASeq, an R package for deconvolution of heterogeneous tissues based on
mRNA-Seq data. It adopts a globally optimized non-negative decomposition al-
gorithm through quadratic programming for estimating the mixing proportions
of distinctive tissue types in next generation sequencing data. We demonstrate
the feasibility and validity of DeconRNASeq across a range of mixing levels and
sources using mRNA-Seq data mixed in-silico at known concentrations.

We presented the workflow of DeconRNASeq package in this vignette. This
tool allows processing of sequencing data for assessing the performance of linear
models and estimating accurately mixing fractions for multiple species of tissues
or cells, and is even able to provide accurate estimates for relatively rare cell
types (<= 0.02). We applied our approach to a realistic simulations involving
complex mixtures of multiple tissues derived from an appropriate experimental
design.

2 File Structure Requirements
A single study analysis requires at least two inputs:

datasets An m-by-n matrix of expression values, where m is the number of
genes (or probes) under consideration and n is the total number of mRNA-
Seq mixing samples consisting of multiple samples. These expression val-
ues should be normalized in some manner. But we leave the users to select
their preferred normalization methods. It should be noted, expression is
generally not on the logs scale, which may destroy the linear model in the
context of mRNA-Seq expression deconvolution.



signatures An m-by-n matrix of expression values, where m is the number
of genes (or probes) which are cell- or tissue-type specific and n is the
total number of cell or tussi types. These espression values should be
normalized in the same manner of datasets. We do not suggest to take
log transformation also.

Our demo uses a simulated example data set, which can be accessed using the
code given below.

library(DeconRNASeq)

## multi_tissue: expression profiles for 10 mixing samples from
## multiple tissues

data(multi_tissue)

datasets <- x.datal,2:11]

signatures <- x.signature.filtered.optimall,2:6]

proportions <- fraction
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For the mixtures, there are 28745 genes. And we have 10 samples. In silico
mixed data were simulated using ([2]) data, with disparate proportions drawn
from random numbers. The mixing proportions used by each type of tissue
are shown in the following. It should also be noted that we investigated the
influence of extremely low numbers of contaminating cell types (<2 percent).

> proportions

brain muscle lung 1liver heart

reads.1.RPKM 0.0463 0.0323 0.0805 0.0747 0.7662
reads.2.RPKM 0.0606 0.1156 0.0278 0.6960 0.1000
reads.3.RPKM 0.0728 0.6058 0.1051 0.1262 0.0900
reads.4.RPKM 0.0709 0.0887 0.7242 0.0975 0.0188
reads.5.RPKM 0.6672 0.1347 0.0486 0.0674 0.0821
reads.6.RPKM 0.1368 0.2181 0.1764 0.3678 0.1010
reads.7.RPKM 0.0780 0.2100 0.2800 0.1603 0.2717
reads.8.RPKM 0.1250 0.3997 0.1830 0.1198 0.1726
reads.9.RPKM 0.2309 0.1230 0.5723 0.0214 0.0524
reads.10.RPKM 0.4284 0.3242 0.0913 0.0644 0.0917

We adopted mRNA-Seq data from the Illumina BodyMap 2.0 (GSE 30611)
as a training data set to define tissue-specific signatures for different human
tissues (adrenal gland, adipose, brain, breast, colon, heart, kidney, liver, lung,
lymph node, ovary, prostate, skeletal muscle, testes, thyroid, and white blood
cells). We selected the overlapped tissues with mixed data and generated tissue-
specific transcriptional profiles

We assessed potential expression signatures via the methods described in
([3]) as the basis matrix for deconvolution. In this case study, we conjecture
that genes with extremely small or large read counts somehow violate our as-
sumptions of linearity or are otherwise unreliable. Therefore, we putatively
removed the genes with RPKM less than 200 within any of the five tissues from
our gene signatures. Consequently, for the tissue-type selected gene signatures,
we selected 1570 genes that consist of the signatures for the five tissues and
deconvoluted the data.



> signatures <- x.signature.filtered.optimall[,2:6]
> attributes(signatures) [c(1,2)]

$names
[1] "brain" "muscle" "lung" "liver" '"heart"

$class
[1] "data.frame"

3 Deconvolution Analysis

After we initiated the parameters/arguments in the last section, we can perform
the deconvolution analysis as following.

> DeconRNASeq(datasets, signatures, proportions, checksig=FALSE,
+ known.prop = TRUE, use.scale = TRUE, fig = TRUE)

svd calculated PCA
Importance of component(s):

PC1 PC2 PC3 PC4 PC5
R2 0.8388 0.1155 0.02277 0.0177 0.00514
Cumulative R2 0.8388 0.9544 0.97714 0.9948 0.99998

Attention: the number of pure cell types = 5 defined in the signature matrix;

PCA results indicate that the number of cell types in the mixtures = 4
$out.all

brain muscle lung liver
[1,] 0.04684774 0.00000000 0.09392811 0.09471810
[2,] 0.07181238 0.11724299 0.08290500 0.61870050
[3,]1 0.06846447 0.60805500 0.12654897 0.13545429
[4,] 0.04241299 0.04891053 0.61470260 0.18971422
[5,] 0.64705933 0.13437755 0.07087937 0.08121135
[6,] 0.11852187 0.19122874 0.23043088 0.35351462
[7,] 0.04647516 0.09320312 0.32264865 0.18147697
[8,]1 0.09992317 0.34888971 0.22163452 0.13292569
[9,]1 0.16108764 0.06903200 0.54792347 0.11886160
[10,] 0.43684023 0.31901296 0.10717750 0.07104230
heart
[1,] 0.76450606
[2,] 0.10933912
[3,]1 0.06147727
[4,]1 0.10425967
[5,] 0.06647239
[6,]1 0.10630389
[7,] 0.35619610
[8,]1 0.19662690
[9,]1 0.10309529
[10,] 0.06592701



$out.pca

PC1 PC2 PC3 PC4 PC5
R2 0.83885 0.11552 0.02277 0.01770 0.00514
Cumulative R2 0.83885 0.95437 0.97714 0.99484 0.99998

$out .rmse
[1] 0.04380197
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The system we describe here assumes that all relevant cell types are ac-
counted for in the cell-specific expression matrix. In reality, this might not
always be the case, as complex tissue samples might include unexpected con-
taminants, or rare cell populations that have not been previously characterized
via expression profiling. Several studies have reported that identifying the cor-
rect number of transcriptional source signals in complex samples is very chal-
lenging. One common approach is to use principle component analysis (PCA)
to estimate the number of sources based on their cumulative variance contri-
butions. Our package includes procedures to assist the user in identifying the
appropriate number of sources guided by PCA. When the number of pure cell
or tissue types defined in the expression signature matrix is inconsistent with
the PCA estimation, our package will give the notification. However, we leave
the users to decide the constituent signal components in the mixtures.



The output out.all includes the estimated mixing fractions of multiple
sources in each mixing sample, the out.rmse outputs the mean RMSE(root
mean square error) for all estimated tissue proportions if the true proportions
are known. We also generated the scatter plots of estimated tissue proportions
(v axis) vs. actual tissue proportions (x axis) for deconvolution of heterogeneous
tissues if fig is TRUE.

4 Condition Number of the Expression Signa-
tures

A basis matrix that contains genes that together form a complete but parsimo-
nious set of robust markers for the tissue types of interest in mRNA-Seq data
is crucial to the success of the deconvolution. Therefore, if we know the mix-
ing proportions, a complete set of matrices comprised of different quantities of
the most differentially-expressed genes can be tested by comparing the results
of each matrix to the known mixture fractions. A matrix’ condition number
estimates the sensitivity of a system of linear equations to errors in the data.
Hence, the condition number is low when the matrix is stable. Thus, we also
provide the plot of the condition number vs. the number of genes from the gene
signature in the deconvolution experiments.

An example is provided by re-runing the same experiment with the param-
eter checksig to be true.

> DeconRNASeq(datasets, signatures, proportions, checksig=TRUE,
+ known.prop = TRUE, use.scale = TRUE, fig = TRUE)
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