cellCellSimulate
functionscTensor 2.4.1
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] scTGIF_1.8.0
## [2] Homo.sapiens_1.3.1
## [3] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [4] org.Hs.eg.db_3.14.0
## [5] GO.db_3.14.0
## [6] OrganismDbi_1.36.0
## [7] GenomicFeatures_1.46.2
## [8] AnnotationDbi_1.56.2
## [9] SingleCellExperiment_1.16.0
## [10] SummarizedExperiment_1.24.0
## [11] Biobase_2.54.0
## [12] GenomicRanges_1.46.1
## [13] GenomeInfoDb_1.30.0
## [14] IRanges_2.28.0
## [15] S4Vectors_0.32.3
## [16] MatrixGenerics_1.6.0
## [17] matrixStats_0.61.0
## [18] scTensor_2.4.1
## [19] RSQLite_2.2.9
## [20] LRBaseDbi_2.4.0
## [21] AnnotationHub_3.2.0
## [22] BiocFileCache_2.2.0
## [23] dbplyr_2.1.1
## [24] BiocGenerics_0.40.0
## [25] BiocStyle_2.22.0
##
## loaded via a namespace (and not attached):
## [1] ica_1.0-2 Rsamtools_2.10.0
## [3] foreach_1.5.1 lmtest_0.9-39
## [5] crayon_1.4.2 spatstat.core_2.3-2
## [7] MASS_7.3-54 nlme_3.1-153
## [9] backports_1.4.1 GOSemSim_2.20.0
## [11] MeSHDbi_1.30.0 rlang_0.4.12
## [13] XVector_0.34.0 ROCR_1.0-11
## [15] irlba_2.3.5 nnTensor_1.1.5
## [17] filelock_1.0.2 GOstats_2.60.0
## [19] BiocParallel_1.28.3 rjson_0.2.20
## [21] tagcloud_0.6 bit64_4.0.5
## [23] glue_1.5.1 sctransform_0.3.2
## [25] parallel_4.1.2 spatstat.sparse_2.0-0
## [27] dotCall64_1.0-1 tcltk_4.1.2
## [29] DOSE_3.20.1 spatstat.geom_2.3-1
## [31] tidyselect_1.1.1 SeuratObject_4.0.4
## [33] fitdistrplus_1.1-6 XML_3.99-0.8
## [35] tidyr_1.1.4 zoo_1.8-9
## [37] GenomicAlignments_1.30.0 xtable_1.8-4
## [39] magrittr_2.0.1 evaluate_0.14
## [41] ggplot2_3.3.5 zlibbioc_1.40.0
## [43] miniUI_0.1.1.1 bslib_0.3.1
## [45] rpart_4.1-15 fastmatch_1.1-3
## [47] treeio_1.18.1 maps_3.4.0
## [49] fields_13.3 shiny_1.7.1
## [51] xfun_0.29 cluster_2.1.2
## [53] tidygraph_1.2.0 TSP_1.1-11
## [55] KEGGREST_1.34.0 tibble_3.1.6
## [57] interactiveDisplayBase_1.32.0 ggrepel_0.9.1
## [59] ape_5.5 listenv_0.8.0
## [61] dendextend_1.15.2 Biostrings_2.62.0
## [63] png_0.1-7 future_1.23.0
## [65] withr_2.4.3 bitops_1.0-7
## [67] ggforce_0.3.3 RBGL_1.70.0
## [69] plyr_1.8.6 GSEABase_1.56.0
## [71] pillar_1.6.4 cachem_1.0.6
## [73] graphite_1.40.0 vctrs_0.3.8
## [75] ellipsis_0.3.2 generics_0.1.1
## [77] plot3D_1.4 outliers_0.14
## [79] tools_4.1.2 entropy_1.3.1
## [81] munsell_0.5.0 tweenr_1.0.2
## [83] fgsea_1.20.0 DelayedArray_0.20.0
## [85] fastmap_1.1.0 compiler_4.1.2
## [87] abind_1.4-5 httpuv_1.6.4
## [89] rtracklayer_1.54.0 plotly_4.10.0
## [91] GenomeInfoDbData_1.2.7 gridExtra_2.3
## [93] lattice_0.20-45 deldir_1.0-6
## [95] visNetwork_2.1.0 AnnotationForge_1.36.0
## [97] utf8_1.2.2 later_1.3.0
## [99] dplyr_1.0.7 jsonlite_1.7.2
## [101] ccTensor_1.0.2 concaveman_1.1.0
## [103] scales_1.1.1 graph_1.72.0
## [105] tidytree_0.3.6 pbapply_1.5-0
## [107] genefilter_1.76.0 lazyeval_0.2.2
## [109] promises_1.2.0.1 goftest_1.2-3
## [111] spatstat.utils_2.3-0 reticulate_1.22
## [113] checkmate_2.0.0 rmarkdown_2.11
## [115] cowplot_1.1.1 schex_1.8.0
## [117] webshot_0.5.2 Rtsne_0.15
## [119] uwot_0.1.11 igraph_1.2.10
## [121] survival_3.2-13 yaml_2.2.1
## [123] plotrix_3.8-2 htmltools_0.5.2
## [125] memoise_2.0.1 rTensor_1.4.8
## [127] BiocIO_1.4.0 Seurat_4.0.5
## [129] seriation_1.3.1 graphlayouts_0.7.2
## [131] viridisLite_0.4.0 digest_0.6.29
## [133] assertthat_0.2.1 ReactomePA_1.38.0
## [135] mime_0.12 rappdirs_0.3.3
## [137] registry_0.5-1 spam_2.7-0
## [139] yulab.utils_0.0.4 future.apply_1.8.1
## [141] misc3d_0.9-1 data.table_1.14.2
## [143] blob_1.2.2 splines_4.1.2
## [145] RCurl_1.98-1.5 hms_1.1.1
## [147] colorspace_2.0-2 BiocManager_1.30.16
## [149] aplot_0.1.1 sass_0.4.0
## [151] Rcpp_1.0.7 bookdown_0.24
## [153] RANN_2.6.1 enrichplot_1.14.1
## [155] fansi_0.5.0 parallelly_1.29.0
## [157] R6_2.5.1 grid_4.1.2
## [159] ggridges_0.5.3 lifecycle_1.0.1
## [161] curl_4.3.2 leiden_0.3.9
## [163] meshr_2.0.2 jquerylib_0.1.4
## [165] DO.db_2.9 Matrix_1.4-0
## [167] qvalue_2.26.0 RcppAnnoy_0.0.19
## [169] RColorBrewer_1.1-2 iterators_1.0.13
## [171] stringr_1.4.0 htmlwidgets_1.5.4
## [173] polyclip_1.10-0 biomaRt_2.50.1
## [175] purrr_0.3.4 shadowtext_0.0.9
## [177] gridGraphics_0.5-1 reactome.db_1.77.0
## [179] mgcv_1.8-38 globals_0.14.0
## [181] patchwork_1.1.1 codetools_0.2-18
## [183] prettyunits_1.1.1 gtable_0.3.0
## [185] DBI_1.1.1 ggfun_0.0.4
## [187] tensor_1.5 httr_1.4.2
## [189] highr_0.9 KernSmooth_2.23-20
## [191] stringi_1.7.6 progress_1.2.2
## [193] msigdbr_7.4.1 reshape2_1.4.4
## [195] farver_2.1.0 heatmaply_1.3.0
## [197] annotate_1.72.0 viridis_0.6.2
## [199] hexbin_1.28.2 fdrtool_1.2.17
## [201] Rgraphviz_2.38.0 magick_2.7.3
## [203] ggtree_3.2.1 xml2_1.3.3
## [205] restfulr_0.0.13 ggplotify_0.1.0
## [207] Category_2.60.0 scattermore_0.7
## [209] BiocVersion_3.14.0 bit_4.0.4
## [211] scatterpie_0.1.7 spatstat.data_2.1-0
## [213] ggraph_2.0.5 babelgene_21.4
## [215] pkgconfig_2.0.3 knitr_1.36