ISAnalytics 1.4.3
ISAnalytics
import functions familyIn this vignette we’re going to explain more in detail how functions of the import family should be used, the most common workflows to follow and more.
ISAnalytics
can be installed quickly in different ways:
devtools
There are always 2 versions of the package active:
RELEASE
is the latest stable versionDEVEL
is the development version, it is the most up-to-date version where
all new features are introducedRELEASE version:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ISAnalytics")
DEVEL version:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
# The following initializes usage of Bioc devel
BiocManager::install(version='devel')
BiocManager::install("ISAnalytics")
RELEASE:
if (!require(devtools)) {
install.packages("devtools")
}
devtools::install_github("calabrialab/ISAnalytics",
ref = "RELEASE_3_14",
dependencies = TRUE,
build_vignettes = TRUE)
DEVEL:
if (!require(devtools)) {
install.packages("devtools")
}
devtools::install_github("calabrialab/ISAnalytics",
ref = "master",
dependencies = TRUE,
build_vignettes = TRUE)
ISAnalytics
has a verbose option that allows some functions to print
additional information to the console while they’re executing.
To disable this feature do:
# DISABLE
options("ISAnalytics.verbose" = FALSE)
# ENABLE
options("ISAnalytics.verbose" = TRUE)
Some functions also produce report in a user-friendly HTML format, to set this feature:
# DISABLE HTML REPORTS
options("ISAnalytics.reports" = FALSE)
# ENABLE HTML REPORTS
options("ISAnalytics.reports" = TRUE)
library(ISAnalytics)
The vast majority of the functions included in this package is designed to work in combination with VISPA2 pipeline (Giulio Spinozzi Andrea Calabria, 2017). If you don’t know what it is, we strongly recommend you to take a look at these links:
VISPA2 produces a standard file system structure starting from a folder you specify as your workbench or root. The structure always follows this schema:
Most of the functions implemented expect a standard file system structure as the one described above.
We call an “integration matrix” a tabular structure characterized by:
chr
, integration_locus
and strand
GeneName
and GeneStrand
#> # A tibble: 3 × 8
#> chr integration_locus strand GeneName GeneStrand exp1 exp2 exp3
#> <chr> <dbl> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 1 12324 + NFATC3 + 4553 5345 NA
#> 2 6 657532 + LOC100507487 + 76 545 5
#> 3 7 657532 + EDIL3 - NA 56 NA
The package uses a more compact form of these matrices, limiting the amount of NA values and optimizing time and memory consumption. For more info on this take a look at: Tidy data
While integration matrices contain the actual data, we also need associated
sample metadata to perform the vast majority of the analyses.
ISAnalytics
expects the metadata to be contained in a so called
“association file”, which is a simple tabular file with a set of
standard column headers.
To generate a blank association file you can use the function
generate_blank_association_file
. You can also view the standard
column names with association_file_columns()
.
To import metadata we use import_association_file()
. This function is not
only responsible for reading the file into the R environment as a data frame,
but it is capable to perform a file system alignment operation,
that is, for each project and pool contained in the file, it scans
the file system starting from the provided root to check if the corresponding
folders (contained in the appropriate column) can be found. Remember that
to work properly, this operation expects a standard folder structure, such
as the one provided by VISPA2. This function also produces an interactive
HTML report, to know more about this feature see vignette(report_system)
.
fs_path <- system.file("extdata", "fs.zip", package = "ISAnalytics")
root <- unzip_file_system(fs_path, "fs")
withr::with_options(list(ISAnalytics.reports = FALSE), code = {
af_path <- system.file("extdata", "asso.file.tsv.gz",
package = "ISAnalytics")
af <- import_association_file(af_path, root = root)
})
#> *** Association file import summary ***
#> ℹ For detailed report please set option 'ISAnalytics.reports' to TRUE
#> * Parsing problems detected: FALSE
#> * Date parsing problems: FALSE
#> * Column problems detected: FALSE
#> * NAs found in important columns: FALSE
#> * File system alignment: no problems detected
#> # A tibble: 6 × 74
#> ProjectID FUSIONID PoolID TagSequence SubjectID VectorType VectorID ExperimentID Tissue TimePoint DNAFragmentation
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 PJ01 ET#382.46 POOL01 LTR75LC38 PT001 lenti GLOBE <NA> PB 0060 SONIC
#> 2 PJ01 ET#381.40 POOL01 LTR53LC32 PT001 lenti GLOBE <NA> BM 0180 SONIC
#> 3 PJ01 ET#381.9 POOL01 LTR83LC66 PT001 lenti GLOBE <NA> BM 0180 SONIC
#> 4 PJ01 ET#381.71 POOL01 LTR27LC94 PT001 lenti GLOBE <NA> BM 0180 SONIC
#> 5 PJ01 ET#381.2 POOL01 LTR69LC52 PT001 lenti GLOBE <NA> PB 0180 SONIC
#> 6 PJ01 ET#382.28 POOL01 LTR37LC2 PT001 lenti GLOBE <NA> BM 0060 SONIC
#> PCRMethod TagIDextended Keywords CellMarker TagID NGSProvider NGSTechnology ConverrtedFilesDir
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 SLiM LTR75LC38 <NA> MNC LTR75.LC38 <NA> HiSeq <NA>
#> 2 SLiM LTR53LC32 <NA> MNC LTR53.LC32 <NA> HiSeq <NA>
#> 3 SLiM LTR83LC66 <NA> MNC LTR83.LC66 <NA> HiSeq <NA>
#> 4 SLiM LTR27LC94 <NA> MNC LTR27.LC94 <NA> HiSeq <NA>
#> 5 SLiM LTR69LC52 <NA> MNC LTR69.LC52 <NA> HiSeq <NA>
#> 6 SLiM LTR37LC2 <NA> MNC LTR37.LC2 <NA> HiSeq <NA>
#> ConverrtedFilesName SourceFileFolder SourceFileNameR1 SourceFileNameR2 DNAnumber ReplicateNumber DNAextractionDate
#> <chr> <chr> <chr> <chr> <chr> <int> <date>
#> 1 <NA> <NA> <NA> <NA> PT001-103 3 2016-03-16
#> 2 <NA> <NA> <NA> <NA> PT001-81 2 2016-07-15
#> 3 <NA> <NA> <NA> <NA> PT001-81 1 2016-07-15
#> 4 <NA> <NA> <NA> <NA> PT001-81 3 2016-07-15
#> 5 <NA> <NA> <NA> <NA> PT001-74 1 2016-07-15
#> 6 <NA> <NA> <NA> <NA> PT001-107 2 2016-03-16
#> DNAngUsed LinearPCRID LinearPCRDate SonicationDate LigationDate `1stExpoPCRID` `1stExpoPCRDate` `2ndExpoID`
#> <dbl> <chr> <date> <date> <date> <chr> <date> <chr>
#> 1 23.2 <NA> NA 2016-11-02 2016-11-02 ET#380.46 2016-11-02 <NA>
#> 2 181. <NA> NA 2016-11-02 2016-11-02 ET#379.40 2016-11-02 <NA>
#> 3 181. <NA> NA 2016-11-02 2016-11-02 ET#379.9 2016-11-02 <NA>
#> 4 181. <NA> NA 2016-11-02 2016-11-02 ET#379.71 2016-11-02 <NA>
#> 5 23.1 <NA> NA 2016-11-02 2016-11-02 ET#379.2 2016-11-02 <NA>
#> 6 171. <NA> NA 2016-11-02 2016-11-02 ET#380.28 2016-11-02 <NA>
#> `2ndExpoDate` FusionPrimerPCRID FusionPrimerPCRDate PoolDate SequencingDate VCN Genome SequencingRound Genotype
#> <date> <chr> <date> <date> <date> <dbl> <chr> <int> <chr>
#> 1 NA ET#382.46 2016-11-03 2016-11-07 2016-11-15 0.3 hg19 1 <NA>
#> 2 NA ET#381.40 2016-11-03 2016-11-07 2016-11-15 0.27 hg19 1 <NA>
#> 3 NA ET#381.9 2016-11-03 2016-11-07 2016-11-15 0.27 hg19 1 <NA>
#> 4 NA ET#381.71 2016-11-03 2016-11-07 2016-11-15 0.27 hg19 1 <NA>
#> 5 NA ET#381.2 2016-11-03 2016-11-07 2016-11-15 0.24 hg19 1 <NA>
#> 6 NA ET#382.28 2016-11-03 2016-11-07 2016-11-15 0.42 hg19 1 <NA>
#> TestGroup MOI Engraftment Transduction Notes AddedField1 AddedField2 AddedField3 AddedField4 concatenatePoolIDSeqRun
#> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 <NA> <NA> NA NA <NA> <NA> <NA> <NA> <NA> POOL01-1
#> 2 <NA> <NA> NA NA <NA> <NA> <NA> <NA> <NA> POOL01-1
#> 3 <NA> <NA> NA NA <NA> <NA> <NA> <NA> <NA> POOL01-1
#> 4 <NA> <NA> NA NA <NA> <NA> <NA> <NA> <NA> POOL01-1
#> 5 <NA> <NA> NA NA <NA> <NA> <NA> <NA> <NA> POOL01-1
#> 6 <NA> <NA> NA NA <NA> <NA> <NA> <NA> <NA> POOL01-1
#> AddedField6_RelativeBloodPercentage AddedField7_PurityTestFeasibility AddedField8_FacsSeparationPurity Kapa ulForPool
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 <NA> NA NA NA NA
#> 2 <NA> NA NA NA NA
#> 3 <NA> NA NA NA NA
#> 4 <NA> NA NA NA NA
#> 5 <NA> NA NA NA NA
#> 6 <NA> NA NA NA NA
#> CompleteAmplificationID UniqueID StudyTestID StudyTestGroup
#> <chr> <chr> <chr> <int>
#> 1 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC ID00000000000000007433 <NA> NA
#> 2 PJ01_POOL01_LTR53LC32_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC ID00000000000000007340 <NA> NA
#> 3 PJ01_POOL01_LTR83LC66_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC ID00000000000000007310 <NA> NA
#> 4 PJ01_POOL01_LTR27LC94_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC ID00000000000000007370 <NA> NA
#> 5 PJ01_POOL01_LTR69LC52_PT001_PT001-74_lenti_GLOBE_PB_1_SLiM_0180_MNC ID00000000000000007303 <NA> NA
#> 6 PJ01_POOL01_LTR37LC2_PT001_PT001-107_lenti_GLOBE_BM_1_SLiM_0060_MNC ID00000000000000007417 <NA> NA
#> MouseID Tigroup Tisource PathToFolderProjectID SamplesNameCheck TimepointDays TimepointMonths TimepointYears
#> <int> <chr> <chr> <chr> <chr> <int> <chr> <chr>
#> 1 NA <NA> <NA> /PJ01 <NA> NA 02 01
#> 2 NA <NA> <NA> /PJ01 <NA> NA 06 01
#> 3 NA <NA> <NA> /PJ01 <NA> NA 06 01
#> 4 NA <NA> <NA> /PJ01 <NA> NA 06 01
#> 5 NA <NA> <NA> /PJ01 <NA> NA 06 01
#> 6 NA <NA> <NA> /PJ01 <NA> NA 02 01
#> `ng DNA corrected` Path Path_quant
#> <dbl> <fs::path> <chr>
#> 1 23.2 /tmp/RtmpYYhioi/fs/PJ01 /tmp/RtmpYYhioi/fs/PJ01/quantification/POOL01-1
#> 2 181. /tmp/RtmpYYhioi/fs/PJ01 /tmp/RtmpYYhioi/fs/PJ01/quantification/POOL01-1
#> 3 181. /tmp/RtmpYYhioi/fs/PJ01 /tmp/RtmpYYhioi/fs/PJ01/quantification/POOL01-1
#> 4 181. /tmp/RtmpYYhioi/fs/PJ01 /tmp/RtmpYYhioi/fs/PJ01/quantification/POOL01-1
#> 5 23.1 /tmp/RtmpYYhioi/fs/PJ01 /tmp/RtmpYYhioi/fs/PJ01/quantification/POOL01-1
#> 6 171. /tmp/RtmpYYhioi/fs/PJ01 /tmp/RtmpYYhioi/fs/PJ01/quantification/POOL01-1
#> Path_iss
#> <chr>
#> 1 /tmp/RtmpYYhioi/fs/PJ01/iss/POOL01-1
#> 2 /tmp/RtmpYYhioi/fs/PJ01/iss/POOL01-1
#> 3 /tmp/RtmpYYhioi/fs/PJ01/iss/POOL01-1
#> 4 /tmp/RtmpYYhioi/fs/PJ01/iss/POOL01-1
#> 5 /tmp/RtmpYYhioi/fs/PJ01/iss/POOL01-1
#> 6 /tmp/RtmpYYhioi/fs/PJ01/iss/POOL01-1
You can change several arguments in the function call to modify the behavior of the function.
root
NULL
if you only want to import the association file without
file system alignment. Beware that some of the automated import
functionalities won’t work!PathToFolderProjectID
in the file should contain
relative file paths, so if for example your root is set to “/home” and
your project folder in the association file is set to “/PJ01”, the function
will check that the directory exists under “/home/PJ01”PathToFolderProjectID
column and set root
= ""tp_padding
: this argument is used to pad the TimePoint
column in the
association file so that time points have all the same lengthdates_format
: a string that is useful for properly parsing dates from
tabular formatsseparator
: the column separator used in the file. Defaults to “\t”,
other valid separators are “,” (comma), “;” (semi-colon)filter_for
: you can set this argument to a named list of filters,
where names are column names. For example list(ProjectID = "PJ01")
will
return only those rows whose attribute “ProjectID” equals “PJ01”import_iss
: either TRUE
or FALSE
. If set to TRUE
, performs
an internal call to import_Vispa2_stats()
(see next section), and appends
the imported files to metadataconvert_tp
: either TRUE
or FALSE
. Converts the “TimePoint” column
in months and years (with custom logic).report_path
NULL
to avoid the production of a report...
: additional named arguments to pass to import_Vispa2_stats()
if
you chose to import VISPA2 statsNOTE: the function supports files in various formats as long as the correct
separator is provided. It also accepts files in *.xlsx
and *.xls
formats
but we do not recommend using these since the report won’t include a
detailed summary of potential parsing problems.
The interactive report includes useful information such as
import_iss
was TRUE
)VISPA2 automatically produces summary files for each pool holding
information that can be useful for other analyses downstream,
so it is recommended to import them in the first steps of the workflow.
To do that, you can use import_VISPA2_stats
:
withr::with_options(list(ISAnalytics.reports = FALSE), {
vispa_stats <- import_Vispa2_stats(
association_file = af,
join_with_af = FALSE
)
})
#> RUN_NAME POOL TAG PHIX_MAPPING PLASMID_MAPPED_BYPOOL BARCODE_MUX LTR_IDENTIFIED TRIMMING_FINAL_LTRLC
#> 1: PJ01|POOL01-1 POOL01-1 LTR75LC38 43586699 2256176 645026 645026 630965
#> 2: PJ01|POOL01-1 POOL01-1 LTR53LC32 43586699 2256176 652208 652177 649044
#> 3: PJ01|POOL01-1 POOL01-1 LTR83LC66 43586699 2256176 451519 451512 449669
#> 4: PJ01|POOL01-1 POOL01-1 LTR27LC94 43586699 2256176 426500 426499 425666
#> 5: PJ01|POOL01-1 POOL01-1 LTR69LC52 43586699 2256176 18300 18300 18290
#> 6: PJ01|POOL01-1 POOL01-1 LTR37LC2 43586699 2256176 729327 729327 727219
#> LV_MAPPED BWA_MAPPED_OVERALL ISS_MAPPED_OVERALL RAW_READS QUALITY_PASSED ISS_MAPPED_PP
#> 1: 211757 402477 219452 NA NA NA
#> 2: 303300 322086 222646 NA NA NA
#> 3: 204810 227275 149385 NA NA NA
#> 4: 185752 223915 143283 NA NA NA
#> 5: 6962 10487 5907 NA NA NA
#> 6: 318653 369117 235640 NA NA NA
The function requires as input the imported and file system aligned
association file and it will scan the iss
folder for files that match some
known prefixes (defaults are already provided but you can change them as you
see fit). You can either choose to join the imported data frames with the
association file in input and obtain a single data frame or keep it as it is,
just set the parameter join_with_af
accordingly.
At the end of the process an HTML report is produced, signaling potential
problems.
You can directly call this function when you import the association file
by setting the import_iss
argument of import_association_file
to TRUE
.
If you want to import a single integration matrix you can do so by using the
import_single_Vispa2Matrix()
function.
This function reads the file and converts it into a tidy structure: several
different formats can be read, since you can specify the column separator.
matrix_path <- fs::path(root,
"PJ01",
"quantification",
"POOL01-1",
"PJ01_POOL01-1_seqCount_matrix.no0.annotated.tsv.gz")
matrix <- import_single_Vispa2Matrix(matrix_path)
#> chr integration_locus strand GeneName GeneStrand
#> 1: 16 68164148 + NFATC3 +
#> 2: 16 1762026 - MAPK8IP3 +
#> 3: 16 15966129 - FOPNL -
#> 4: 16 1762026 - MAPK8IP3 +
#> 5: 16 29843197 - MVP +
#> ---
#> 798: X 41047794 - USP9X +
#> 799: X 138822227 + ATP11C -
#> 800: X 69681219 + DLG3 +
#> 801: X 69681219 + DLG3 +
#> 802: X 41047794 - USP9X +
#> CompleteAmplificationID Value
#> 1: PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 182
#> 2: PJ01_POOL01_LTR53LC32_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC 727
#> 3: PJ01_POOL01_LTR53LC32_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC 821
#> 4: PJ01_POOL01_LTR83LC66_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC 37
#> 5: PJ01_POOL01_LTR83LC66_PT001_PT001-81_lenti_GLOBE_BM_1_SLiM_0180_MNC 983
#> ---
#> 798: PJ01_POOL01_LTR19LC2_PT001_PT001-97_lenti_GLOBE_BM_1_SLiM_0030_MNC 32
#> 799: PJ01_POOL01_LTR57LC20_PT001_PT001-116_lenti_GLOBE_BM_1_SLiM_0090_MNC 2535
#> 800: PJ01_POOL01_LTR5LC64_PT001_PT001-116_lenti_GLOBE_BM_1_SLiM_0090_MNC 1693
#> 801: PJ01_POOL01_LTR85LC64_PT001_PT001-97_lenti_GLOBE_BM_1_SLiM_0030_MNC 1
#> 802: PJ01_POOL01_LTR85LC64_PT001_PT001-97_lenti_GLOBE_BM_1_SLiM_0030_MNC 609
Other arguments you can pass to the function are
to_exclude
: a character vector that contains column names that need to
be excluded when imported. This is more targeted towards files that do have
all the columns of an integration matrix as presented in section
3 and other additional columns. By default this argument is set
to NULL
keep_excluded
: if set to TRUE
all columns contained in to_exclude
are
preserved as additional annotation columnsIntegration matrices import can be automated when when the association file
is imported with the file system alignment option.
ISAnalytics
provides a function, import_parallel_Vispa2Matrices()
,
that allows to do just that in a fast and efficient way.
withr::with_options(list(ISAnalytics.reports = FALSE), {
matrices <- import_parallel_Vispa2Matrices(af,
c("seqCount", "fragmentEstimate"),
mode = "AUTO"
)
})
Let’s see how the behavior of the function changes when we change arguments.
association_file
argumentYou can supply a data frame object, imported via import_association_file()
(see Section 4) or a string (the path to the association file
on disk). In the first scenario it is necessary to perform file system
alignment, since the function scans the folders contained in the column
Path_quant
, while in the second case you should also provide as additional
named argument (to ...
) an appropriate root
: the function will
internally call import_association_file()
, if you don’t have specific
needs we recommend doing the 2 steps separately and provide the association
file as a data frame.
quantification_type
argumentFor each pool there may be multiple available quantification types, that is,
different matrices containing the same samples
and same genomic features but a different quantification.
A typical workflow contemplates seqCount
and fragmentEstimate
,
all the supported quantification types can be viewed with
quantification_types()
.
matrix_type
argumentAs we mentioned in Section 3, annotation columns are optional
and may not be included in some matrices. This argument allows you to
specify the function to look for only a specific type of matrix, either
annotated
or not_annotated
. Please note that in order to do that,
for now,
the function needs to assume some standard file name notation, that is,
for annotated
matrices, the function will look for the .no0.annotated
suffix in the file name.
workers
argumentSets the number of parallel workers to set up. This highly depends on the hardware configuration of your machine.
multi_quant_matrix
argumentWhen importing more than one quantification at once, it can be very handy
to have all data in a single data frame rather than two. If set to TRUE
the function will internally call comparison_matrix()
and produce a
single data frames that has a dedicated column for each quantification.
For example, for the matrices we’ve imported before:
#> # A tibble: 6 × 8
#> chr integration_locus strand GeneName GeneStrand
#> <chr> <int> <chr> <chr> <chr>
#> 1 16 68164148 + NFATC3 +
#> 2 4 129390130 + LOC100507487 +
#> 3 5 84009671 - EDIL3 -
#> 4 12 54635693 - CBX5 -
#> 5 2 181930711 + UBE2E3 +
#> 6 20 35920986 + MANBAL +
#> CompleteAmplificationID fragmentEstimate seqCount
#> <fct> <dbl> <int>
#> 1 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 103. 182
#> 2 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 3.01 4
#> 3 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 5.03 5
#> 4 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 9.13 9
#> 5 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 50.5 83
#> 6 PJ01_POOL01_LTR75LC38_PT001_PT001-103_lenti_GLOBE_PB_1_SLiM_0060_MNC 16.4 39
report_path
argumentAs other import functions, also import_parallel_Vispa2Matrices()
produces
an interactive report, use this argument to set the appropriate path were
the report should be saved.
mode
argumentThis argument can take one of two values, AUTO
or INTERACTIVE
.
The INTERACTIVE
workflow, as the name suggests, needs user console
input but allows a fine tuning of the import process. On the other hand,
AUTO
allows a fully automated workflow but has of course some limitations.
What do you want to import?
In a fully automated mode, the function will try to import everything that
is contained in the input association file. This means that if you need to
import only a specific set of projects/pools, you will need to filter the
association file accordingly prior calling the function (you can easily
do that via the filter_for
argument as explained in Section 4).
In interactive mode the function will ask you to type what you want to import.
How to deal with duplicates?
When scanning folders for files that match a given pattern (in our case the
function looks for matrices that match the quantification type and the
matrix type), it is very possible that the same folder contains multiple files
for the same quantification. Of course this is not recommended, we suggest to
move the duplicated files in a sub directory or remove them if they’re not
necessary, but in case this happens, in interactive mode, the function asks
directly which files should be considered. Of course this is not possible in
automated mode, therefore you need to set two other arguments (described
in the next sub sections) to “help” the function discriminate
between duplicates. Please note that if such discrimination is not possible
no files are imported.
patterns
argumentThis argument is relevant only if mode
is set to AUTO
. Providing a
set of patterns (interpreted as regular expressions) helps the function to
choose between duplicated files if any are found. If you’re confident your
folders don’t contain any duplicates feel free to ignore this argument.
matching_opt
argumentThis argument is relevant only if mode
is set to AUTO
and patterns
isn’t NULL
. Tells the function how to match the given patterns if multiple
are supplied: ALL
means keep only those files whose name matches all the
given patterns, ANY
means keep only those files whose name matches any of the
given patterns and OPTIONAL
expresses a preference, try to find files that
contain the patterns and if you don’t find any return whatever you find.
...
argumentAdditional named arguments to supply to both import_association_file()
and
comparison_matrix()
.
Earlier versions of the package featured two separated functions,
import_parallel_Vispa2Matrices_auto()
and
import_parallel_Vispa2Matrices_interactive()
. Those functions are now
officially deprecated (since ISAnalytics 1.3.3
) and will be defunct on
the next release cycle.
R
session information.
#> ─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.1.2 (2021-11-01)
#> os Ubuntu 20.04.3 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype en_US.UTF-8
#> tz America/New_York
#> date 2022-01-16
#> pandoc 2.5 @ /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [2] CRAN (R 4.1.2)
#> BiocManager 1.30.16 2021-06-15 [2] CRAN (R 4.1.2)
#> BiocParallel 1.28.3 2022-01-16 [2] Bioconductor
#> BiocStyle * 2.22.0 2022-01-16 [2] Bioconductor
#> bit 4.0.4 2020-08-04 [2] CRAN (R 4.1.2)
#> bit64 4.0.5 2020-08-30 [2] CRAN (R 4.1.2)
#> bookdown 0.24 2021-09-02 [2] CRAN (R 4.1.2)
#> bslib 0.3.1 2021-10-06 [2] CRAN (R 4.1.2)
#> cli 3.1.0 2021-10-27 [2] CRAN (R 4.1.2)
#> colorspace 2.0-2 2021-06-24 [2] CRAN (R 4.1.2)
#> crayon 1.4.2 2021-10-29 [2] CRAN (R 4.1.2)
#> data.table 1.14.2 2021-09-27 [2] CRAN (R 4.1.2)
#> DBI 1.1.2 2021-12-20 [2] CRAN (R 4.1.2)
#> digest 0.6.29 2021-12-01 [2] CRAN (R 4.1.2)
#> dplyr 1.0.7 2021-06-18 [2] CRAN (R 4.1.2)
#> ellipsis 0.3.2 2021-04-29 [2] CRAN (R 4.1.2)
#> evaluate 0.14 2019-05-28 [2] CRAN (R 4.1.2)
#> fansi 1.0.2 2022-01-14 [2] CRAN (R 4.1.2)
#> fastmap 1.1.0 2021-01-25 [2] CRAN (R 4.1.2)
#> fs 1.5.2 2021-12-08 [2] CRAN (R 4.1.2)
#> generics 0.1.1 2021-10-25 [2] CRAN (R 4.1.2)
#> ggplot2 3.3.5 2021-06-25 [2] CRAN (R 4.1.2)
#> ggrepel 0.9.1 2021-01-15 [2] CRAN (R 4.1.2)
#> glue 1.6.0 2021-12-17 [2] CRAN (R 4.1.2)
#> gtable 0.3.0 2019-03-25 [2] CRAN (R 4.1.2)
#> highr 0.9 2021-04-16 [2] CRAN (R 4.1.2)
#> hms 1.1.1 2021-09-26 [2] CRAN (R 4.1.2)
#> htmltools 0.5.2 2021-08-25 [2] CRAN (R 4.1.2)
#> httr 1.4.2 2020-07-20 [2] CRAN (R 4.1.2)
#> ISAnalytics * 1.4.3 2022-01-16 [1] Bioconductor
#> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.1.2)
#> jsonlite 1.7.2 2020-12-09 [2] CRAN (R 4.1.2)
#> knitr 1.37 2021-12-16 [2] CRAN (R 4.1.2)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
#> lifecycle 1.0.1 2021-09-24 [2] CRAN (R 4.1.2)
#> lubridate 1.8.0 2021-10-07 [2] CRAN (R 4.1.2)
#> magrittr * 2.0.1 2020-11-17 [2] CRAN (R 4.1.2)
#> mnormt 2.0.2 2020-09-01 [2] CRAN (R 4.1.2)
#> munsell 0.5.0 2018-06-12 [2] CRAN (R 4.1.2)
#> nlme 3.1-155 2022-01-13 [2] CRAN (R 4.1.2)
#> pillar 1.6.4 2021-10-18 [2] CRAN (R 4.1.2)
#> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.1.2)
#> plyr 1.8.6 2020-03-03 [2] CRAN (R 4.1.2)
#> psych 2.1.9 2021-09-22 [2] CRAN (R 4.1.2)
#> purrr 0.3.4 2020-04-17 [2] CRAN (R 4.1.2)
#> R.methodsS3 1.8.1 2020-08-26 [2] CRAN (R 4.1.2)
#> R.oo 1.24.0 2020-08-26 [2] CRAN (R 4.1.2)
#> R.utils 2.11.0 2021-09-26 [2] CRAN (R 4.1.2)
#> R6 2.5.1 2021-08-19 [2] CRAN (R 4.1.2)
#> Rcapture 1.4-3 2019-12-16 [2] CRAN (R 4.1.2)
#> Rcpp 1.0.8 2022-01-13 [2] CRAN (R 4.1.2)
#> readr 2.1.1 2021-11-30 [2] CRAN (R 4.1.2)
#> RefManageR * 1.3.0 2020-11-13 [2] CRAN (R 4.1.2)
#> rlang 0.4.12 2021-10-18 [2] CRAN (R 4.1.2)
#> rmarkdown 2.11 2021-09-14 [2] CRAN (R 4.1.2)
#> sass 0.4.0 2021-05-12 [2] CRAN (R 4.1.2)
#> scales 1.1.1 2020-05-11 [2] CRAN (R 4.1.2)
#> sessioninfo * 1.2.2 2021-12-06 [2] CRAN (R 4.1.2)
#> stringi 1.7.6 2021-11-29 [2] CRAN (R 4.1.2)
#> stringr 1.4.0 2019-02-10 [2] CRAN (R 4.1.2)
#> tibble 3.1.6 2021-11-07 [2] CRAN (R 4.1.2)
#> tidyr 1.1.4 2021-09-27 [2] CRAN (R 4.1.2)
#> tidyselect 1.1.1 2021-04-30 [2] CRAN (R 4.1.2)
#> tmvnsim 1.0-2 2016-12-15 [2] CRAN (R 4.1.2)
#> tzdb 0.2.0 2021-10-27 [2] CRAN (R 4.1.2)
#> utf8 1.2.2 2021-07-24 [2] CRAN (R 4.1.2)
#> vctrs 0.3.8 2021-04-29 [2] CRAN (R 4.1.2)
#> vroom 1.5.7 2021-11-30 [2] CRAN (R 4.1.2)
#> withr 2.4.3 2021-11-30 [2] CRAN (R 4.1.2)
#> xfun 0.29 2021-12-14 [2] CRAN (R 4.1.2)
#> xml2 1.3.3 2021-11-30 [2] CRAN (R 4.1.2)
#> yaml 2.2.1 2020-02-01 [2] CRAN (R 4.1.2)
#> zip 2.2.0 2021-05-31 [2] CRAN (R 4.1.2)
#>
#> [1] /tmp/RtmplowxUB/Rinst3081361f546c34
#> [2] /home/biocbuild/bbs-3.14-bioc/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
This vignette was generated using BiocStyle (Oleś, 2022) with knitr (Xie, 2021) and rmarkdown (Allaire, Xie, McPherson, et al., 2021) running behind the scenes.
Citations made with RefManageR (McLean, 2017).
[1] J. Allaire, Y. Xie, J. McPherson, et al. rmarkdown: Dynamic Documents for R. R package version 2.11. 2021. URL: https://github.com/rstudio/rmarkdown.
[2] S. B. Giulio Spinozzi Andrea Calabria. “VISPA2: a scalable pipeline for high-throughput identification and annotation of vector integration sites”. In: BMC Bioinformatics (Nov. 25, 2017). DOI: 10.1186/s12859-017-1937-9.
[3] M. W. McLean. “RefManageR: Import and Manage BibTeX and BibLaTeX References in R”. In: The Journal of Open Source Software (2017). DOI: 10.21105/joss.00338.
[4] A. Oleś. BiocStyle: Standard styles for vignettes and other Bioconductor documents. R package version 2.22.0. 2022. URL: https://github.com/Bioconductor/BiocStyle.
[5] Y. Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.37. 2021. URL: https://yihui.org/knitr/.