smoothSds {bsseq} | R Documentation |
Smooth the standard deviations using a thresholded running mean based on smoothed whole-genome bisulfite sequencing data.
smoothSds(BSseqStat, k = 101, qSd = 0.75, mc.cores = 1, maxGap = 10^8, verbose = TRUE)
BSseqStat |
An object of class |
k |
A positive scalar, see details. |
qSd |
A scalar between 0 and 1, see details. |
mc.cores |
The number of cores used. Note that setting
|
maxGap |
A scalar greater than 0, see details. |
verbose |
Should the function be verbose? |
The standard deviation estimates are smoothed using a running mean with a
width of k
and thresholded using qSd
which sets the minimum
standard deviation to be the qSd
-quantile.
An object of class BSseqStat. More speciically, the input
BSseqStat object with the computed statistics added to the
stats
slot (accessible with getStats
).
Kasper Daniel Hansen khansen@jhsph.edu
BSmooth.fstat
for the function to create the appropriate
BSseqStat
input object.
BSseqStat
also describes the return class. This
function is likely to be followed by the use of computeStat
.
if(require(bsseqData)) { # library(limma) required for makeContrasts() library(limma) data(keepLoci.ex) data(BS.cancer.ex.fit) BS.cancer.ex.fit <- updateObject(BS.cancer.ex.fit) ## Remember to subset the BSseq object, see vignette for explanation ## TODO: Kind of a forced example design <- model.matrix(~0 + BS.cancer.ex.fit$Type) colnames(design) <- gsub("BS\\.cancer\\.ex\\.fit\\$Type", "", colnames(design)) contrasts <- makeContrasts( cancer_vs_normal = cancer - normal, levels = design ) BS.stat <- BSmooth.fstat(BS.cancer.ex.fit[keepLoci.ex,], design, contrasts) BS.stat <- smoothSds(BS.stat) ## Comparing the raw standard deviations to the smoothed standard ## deviations summary(getStats(BS.stat, what = "rawSds")) summary(getStats(BS.stat, what = "smoothSds")) }