PECA {PECA} | R Documentation |
Calculates the PECA ordinary or modified t-statistic to determine differential expression between two groups of samples in Affymetrix gene expression studies or peptide-based proteomic studies.
## Read AffyBatch object PECA_AffyBatch(affy=NULL, normalize=FALSE, log=TRUE, test="t", type="median", paired=FALSE, progress=FALSE) ## Read CEL-files PECA_CEL(samplenames1=NULL, samplenames2=NULL, normalize=FALSE, log=TRUE, test="t", type="median", paired=FALSE, progress=FALSE) ## Read tab separated text file PECA_tsv(file=NULL, samplenames1=NULL, samplenames2=NULL, normalize=FALSE, log=TRUE, test="t", type="median", paired=FALSE, progress=FALSE) ## Read dataframe PECA_df(df=NULL, id=NULL, samplenames1=NULL, samplenames2=NULL, normalize=FALSE, log=TRUE, test="t", type="median", paired=FALSE, progress=FALSE)
affy |
AffyBatch object. |
normalize |
A character string indicating if (" |
log |
A logical indicating whether log2 scaling is performed. |
test |
A character string indicating whether the ordinary t-test (" |
type |
A character string indicating whether (" |
paired |
A logical indicating whether a paired test is performed. |
file |
Filename of tab separated data. |
samplenames1 |
A character vector containing the names of the .CEL-files/columns in the first group. |
samplenames2 |
A character vector containing the names of the .CEL-files/columns in the second group. |
df |
Dataframe to be used as an input. |
id |
Column name of dataframe used for aggregating results. |
progress |
A logical indicating whether a progress bar is shown. |
PECA
determines differential gene expression using directly the probe-level measurements from Affymetrix gene expression microarrays or proteomic datasets. An expression change between two groups of samples is first calculated for each probe/peptide on the array. The gene/protein-level expression changes are then defined as medians over the probe-level changes. For more details about the probe-level expression change averaging (PECA) procedure, see Elo et al. (2005), Laajala et al. (2009) and Suomi et al.
PECA
calculates the probe-level expression changes using the ordinary or modified t-statistic. The ordinary t-statistic is calculated using the function rowttests
in the Bioconductor genefilter
package. The modified t-statistic is calculated using the linear modeling approach in the Bioconductor limma
package. Both paired and unpaired tests are supported.
The significance of an expression change is determined based on the analytical p-value of the gene-level test statistic. Unadjusted p-values are reported along with the corresponding p-values looked up from beta ditribution. The quality control and filtering of the data (e.g. based on low intensity or probe specificity) is left to the user.
PECADE
returns a matrix which rows correspond to the genes under analysis and columns indicate the corresponding signal log-ratio (slr), t-statistic, p-value and FDR adjusted p-value.
T. Suomi, G.L. Corthals, O. Nevalainen and L.L. Elo: Using peptide-level proteomics data for detecting differentially expressed proteins. 2015
L.L. Elo, L. Lahti, H. Skottman, M. Kylaniemi, R. Lahesmaa and T. Aittokallio: Integrating probe-level expression changes across generations of Affymetrix arrays. Nucleic Acids Research 33(22), e193, 2005.
E. Laajala, T. Aittokallio, R. Lahesmaa and L.L. Elo: Probe-level estimation improves the detection of differential splicing in Affymetrix exon array studies. Genome Biology 10(7), R77, 2009.
H. Bengtsson, K. Simpson, J. Bullard and K. Hansen: aroma.affymetrix: A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory. Tech Report \#745, Department of Statistics, University of California, Berkeley, 2008.
## Generate example data frame df <- data.frame(id=c(rep("a",10),rep("b",10),rep("c",10))) df$A1 <- rnorm(30, mean=50, sd=5) df$A2 <- rnorm(30, mean=48, sd=5) df$A3 <- rnorm(30, mean=50, sd=5) df$B1 <- rnorm(30, mean=52, sd=5) df$B2 <- rnorm(30, mean=53, sd=5) df$B3 <- rnorm(30, mean=51, sd=5) ## Run the test group1 <- c("A1","A2","A3") group2 <- c("B1","B2","B3") results <- PECA_df(df, group1, group2, id=id)