ssea.finish.genes {Mergeomics} | R Documentation |
ssea.finish.genes
organizes and stores the gene-related MSEA
results into relevant output file. It finds the top markers within genes,
update gene scores and gene sizes, and save the results.
ssea.finish.genes(job)
job |
data list including the information about the MSEA process: folder: output folder for results. database: database including indexed identities for modules, genes, and markers. |
job |
data list including the organized gene-related results of MSEA process: generesults: updated gene-specific information; indexed gene identity (GENE), gene size (NLOCI), unadjusted enrichment score (SCORE), marker with maximum value (LOCUS), marker value (VALUE). |
Ville-Petteri Makinen
Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.
job.msea <- list() job.msea$label <- "hdlc" job.msea$folder <- "Results" job.msea$genfile <- system.file("extdata", "genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$marfile <- system.file("extdata", "marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics") job.msea$modfile <- system.file("extdata", "modules.mousecoexpr.liver.human.txt", package="Mergeomics") job.msea$inffile <- system.file("extdata", "coexpr.info.txt", package="Mergeomics") job.msea$nperm <- 100 ## default value is 20000 ## ssea.start() process takes long time while merging the genes sharing high ## amounts of markers (e.g. loci). it is performed with full module list in ## the vignettes. Here, we used a very subset of the module list (1st 10 mods ## from the original module file) and we collected the corresponding genes ## and markers belonging to these modules: moddata <- tool.read(job.msea$modfile) gendata <- tool.read(job.msea$genfile) mardata <- tool.read(job.msea$marfile) mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)), 10)] moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),] gendata <- gendata[which(!is.na(match(gendata$GENE, unique(moddata$GENE)))),] mardata <- mardata[which(!is.na(match(mardata$MARKER, unique(gendata$MARKER)))),] ## save this to a temporary file and set its path as new job.msea$modfile: tool.save(moddata, "subsetof.coexpr.modules.txt") tool.save(gendata, "subsetof.genfile.txt") tool.save(mardata, "subsetof.marfile.txt") job.msea$modfile <- "subsetof.coexpr.modules.txt" job.msea$genfile <- "subsetof.genfile.txt" job.msea$marfile <- "subsetof.marfile.txt" ## run ssea.start() and prepare for this small set: (due to the huge runtime) job.msea <- ssea.start(job.msea) job.msea <- ssea.prepare(job.msea) job.msea <- ssea.control(job.msea) job.msea <- ssea.analyze(job.msea) job.msea <- ssea.finish(job.msea) ## Estimate mod FDR values, sort according to significance, save full results: job.msea <- ssea.finish.fdr(job.msea) ## Collect top markers(e.g.loci) within genes, save genes with top marker Pval job.msea <- ssea.finish.genes(job.msea) ## Remove the temporary files used for the test: file.remove("subsetof.coexpr.modules.txt") file.remove("subsetof.genfile.txt") file.remove("subsetof.marfile.txt")