readResults {GSEABenchmarkeR} | R Documentation |
These functions read results obtained from the application of enrichment methods to multiple datasets for subsequent assessment.
readResults( data.dir, data.ids, methods, type = c("runtime", "ranking", "typeI") )
data.dir |
Character. The data directory where results have been saved to. |
data.ids |
A character vector of dataset IDs. |
methods |
Methods for enrichment analysis. A character vector with
method names typically chosen from |
type |
Character. Type of the result. Should be one out of 'runtime', 'ranking', or 'typeI'. |
A result list with an entry for each method applied. Each entry
stores corresponding runtimes (type="runtime"
), gene set
rankings (type="ranking"
), or type I error rates (type="typeI"
)
as obtained from applying the respective method to the given datasets.
Ludwig Geistlinger <Ludwig.Geistlinger@sph.cuny.edu>
runEA
to apply enrichment methods to multiple datasets.
# simulated setup: # 1 methods & 1 datasets methods <- paste0("m", 1:2) data.ids <- paste0("d", 1:2) # result directory res.dir <- tempdir() sdirs <- file.path(res.dir, methods) for(d in sdirs) dir.create(d) # store runtime & rankings for(m in 1:2) { rt <- runif(5, min=m, max=m+1) for(d in 1:2) { # runtime out.file <- paste(data.ids[d], "txt", sep=".") out.file <- file.path(sdirs[m], out.file) cat(rt[d], file=out.file) # ranking out.file <- sub("txt$", "rds", out.file) r <- EnrichmentBrowser::makeExampleData("ea.res") r <- EnrichmentBrowser::gsRanking(r, signif.only=FALSE) saveRDS(r, file=out.file) } } # reading runtime & rankings rts <- readResults(res.dir, data.ids, methods, type="runtime") rkgs <- readResults(res.dir, data.ids, methods, type="ranking")