VarianceBoxplot {DEqMS} | R Documentation |
This function is to draw a boxplot of the variance of genes quantified by different number of peptides/PSMs. Red curve indicate DEqMS prior variance.
VarianceBoxplot(fit,n=20, xlab="count", ylab = "log(Variance)", main="")
fit |
an object returned from |
n |
set a number to plot only the genes with count value smaller or equal to n |
xlab |
the title for x axis |
ylab |
the title for y axis |
main |
the title for the figure |
return a plot graphic
Yafeng Zhu
library(ExperimentHub) eh = ExperimentHub(localHub=TRUE) query(eh, "DEqMS") dat.psm = eh[["EH1663"]] dat.psm.log = dat.psm dat.psm.log[,3:12] = log2(dat.psm[,3:12]) dat.gene.nm = medianSweeping(dat.psm.log,group_col = 2) psm.count.table = as.data.frame(table(dat.psm$gene)) # generate PSM count table rownames(psm.count.table)=psm.count.table$Var1 cond = c("ctrl","miR191","miR372","miR519","ctrl", "miR372","miR519","ctrl","miR191","miR372") sampleTable <- data.frame( row.names = colnames(dat.psm)[3:12], cond = as.factor(cond) ) gene.matrix = as.matrix(dat.gene.nm) design = model.matrix(~cond,sampleTable) fit1 <- eBayes(lmFit(gene.matrix,design)) # add PSM count for each gene fit1$count <- psm.count.table[rownames(fit1$coefficients),2] fit2 = spectraCounteBayes(fit1) VarianceBoxplot(fit2,xlab="PSM count",main="TMT data PXD004163")