plotScoringModel {CNVfilteR} | R Documentation |
Plots scoring model used for CNV duplications
plotScoringModel( expected.ht.mean, expected.dup.ht.mean1, expected.dup.ht.mean2, sigmoid.c1, sigmoid.c2.vector )
expected.ht.mean |
Expected heterozygous SNV/indel allele frequency |
expected.dup.ht.mean1 |
Expected heterozygous SNV/indel allele frequency when the variant IS NOT in the same allele than the CNV duplication call |
expected.dup.ht.mean2 |
Expected heterozygous SNV/indel allele frequency when the variant IS in the same allele than the CNV duplication call |
sigmoid.c1 |
Sigmoid c1 parameter |
sigmoid.c2.vector |
Vector containing sigmoid c2 parameters for the six sigmoids functions |
nothing
# Load CNVs data cnvs.file <- system.file("extdata", "DECoN.CNVcalls.csv", package = "CNVfilteR", mustWork = TRUE) cnvs.gr <- loadCNVcalls(cnvs.file = cnvs.file, chr.column = "Chromosome", start.column = "Start", end.column = "End", cnv.column = "CNV.type", sample.column = "Sample") # Load VCFs data vcf.files <- c(system.file("extdata", "variants.sample1.vcf.gz", package = "CNVfilteR", mustWork = TRUE), system.file("extdata", "variants.sample2.vcf.gz", package = "CNVfilteR", mustWork = TRUE)) vcfs <- loadVCFs(vcf.files, cnvs.gr = cnvs.gr) # Filter CNVs results <- filterCNVs(cnvs.gr, vcfs) # Plot scoring model for duplication CNVs p <- results$filterParameters plotScoringModel(expected.ht.mean = p$expected.ht.mean, expected.dup.ht.mean1 = p$expected.dup.ht.mean1, expected.dup.ht.mean2 = p$expected.dup.ht.mean2, sigmoid.c1 = p$sigmoid.c1, sigmoid.c2.vector = p$sigmoid.c2.vector)