VplotR is an R package streamlining the process of generating V-plots, i.e. two-dimensional paired-end fragment density plots. It contains functions to import paired-end sequencing bam files from any type of DNA accessibility experiments (e.g. ATAC-seq, DNA-seq, MNase-seq) and can produce V-plots and one-dimensional footprint profiles over single or aggregated genomic loci of interest. The R package is well integrated within the Bioconductor environment and easily fits in standard genomic analysis workflows. Integrating V-plots into existing analytical frameworks has already brought additional insights in chromatin organization (Serizay et al., 2020).
The main user-level functions of VplotR are getFragmentsDistribution()
, plotVmat()
, plotFootprint()
and plotProfile()
.
getFragmentsDistribution()
computes the distribution of fragment sizes over sets of genomic ranges;plotVmat()
is used to compute fragment density and generate V-plots;plotFootprint()
generates the MNase-seq or ATAC-seq footprint at a set of genomic ranges.plotProfile()
is used to plot the distribution of paired-end fragments at a single locus of interest.VplotR can be installed from Bioconductor:
importPEBamFiles()
functionPaired-end .bam files are imported using the importPEBamFiles()
function as follows:
library(VplotR)
bamfile <- system.file("extdata", "ex1.bam", package = "Rsamtools")
fragments <- importPEBamFiles(
bamfile,
shift_ATAC_fragments = TRUE
)
#> > Importing /home/biocbuild/bbs-3.13-bioc/R/library/Rsamtools/extdata/ex1.bam ...
#> > Filtering /home/biocbuild/bbs-3.13-bioc/R/library/Rsamtools/extdata/ex1.bam ...
#> > Shifting /home/biocbuild/bbs-3.13-bioc/R/library/Rsamtools/extdata/ex1.bam ...
#> > /home/biocbuild/bbs-3.13-bioc/R/library/Rsamtools/extdata/ex1.bam import completed.
fragments
#> GRanges object with 1572 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] seq1 41-215 +
#> [2] seq1 54-255 +
#> [3] seq1 56-258 +
#> [4] seq1 65-255 +
#> [5] seq1 65-265 +
#> ... ... ... ...
#> [1568] seq2 1326-1542 -
#> [1569] seq2 1336-1544 -
#> [1570] seq2 1358-1550 -
#> [1571] seq2 1380-1557 -
#> [1572] seq2 1353-1562 -
#> -------
#> seqinfo: 2 sequences from an unspecified genome; no seqlengths
Several datasets are available for this package:
data(ce11_proms)
ce11_proms
#> GRanges object with 17458 ranges and 3 metadata columns:
#> seqnames ranges strand | TSS.fwd TSS.rev which.tissues
#> <Rle> <IRanges> <Rle> | <numeric> <numeric> <factor>
#> [1] chrI 11273-11423 + | 11294 11416 Intest.
#> [2] chrI 11273-11423 - | 11294 11416 Intest.
#> [3] chrI 26903-27053 - | 27038 26901 Ubiq.
#> [4] chrI 36019-36169 - | 36112 36028 Intest.
#> [5] chrI 42127-42277 - | 42216 42119 Soma
#> ... ... ... ... . ... ... ...
#> [17454] chrX 17670496-17670646 + | 17670678 17670478 Muscle
#> [17455] chrX 17684894-17685044 - | 17684919 17684932 Hypod.
#> [17456] chrX 17686030-17686180 - | 17686189 17686064 Unclassified
#> [17457] chrX 17694789-17694939 + | 17694962 17694934 Intest.
#> [17458] chrX 17711839-17711989 - | 17711974 17711854 Germline
#> -------
#> seqinfo: 6 sequences from an unspecified genome; no seqlengths
data(ATAC_ce11_Serizay2020)
ATAC_ce11_Serizay2020
#> $Germline
#> GRanges object with 462371 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chrI 426-514 +
#> [2] chrI 3588-3854 +
#> [3] chrI 3640-3798 +
#> [4] chrI 3650-3694 +
#> [5] chrI 3732-3863 +
#> ... ... ... ...
#> [462367] chrX 17712277-17712469 -
#> [462368] chrX 17712279-17712342 -
#> [462369] chrX 17712282-17712565 -
#> [462370] chrX 17712285-17712384 -
#> [462371] chrX 17712287-17712576 -
#> -------
#> seqinfo: 7 sequences from an unspecified genome; no seqlengths
#>
#> $Neurons
#> GRanges object with 367935 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chrI 4011-4241 +
#> [2] chrI 7397-7614 +
#> [3] chrI 11279-11502 +
#> [4] chrI 12744-12819 +
#> [5] chrI 14381-14433 +
#> ... ... ... ...
#> [367931] chrX 17687948-17687982 -
#> [367932] chrX 17699614-17699853 -
#> [367933] chrX 17706798-17706923 -
#> [367934] chrX 17708264-17708347 -
#> [367935] chrX 17709920-17710007 -
#> -------
#> seqinfo: 7 sequences from an unspecified genome; no seqlengths
data(ABF1_sacCer3)
ABF1_sacCer3
#> GRanges object with 567 ranges and 2 metadata columns:
#> seqnames ranges strand | relScore ID
#> <Rle> <IRanges> <Rle> | <numeric> <Rle>
#> [1] chrIV 392624-392639 + | 0.979866 MA0265.1
#> [2] chrIV 1196424-1196439 + | 0.979866 MA0265.1
#> [3] chrXIV 400687-400702 + | 0.979866 MA0265.1
#> [4] chrII 216540-216555 - | 0.978608 MA0265.1
#> [5] chrXVI 95317-95332 - | 0.974833 MA0265.1
#> ... ... ... ... . ... ...
#> [563] chrIV 1402786-1402801 + | 0.900182 MA0265.1
#> [564] chrX 545320-545335 + | 0.900182 MA0265.1
#> [565] chrXI 571301-571316 - | 0.900182 MA0265.1
#> [566] chrXIV 140631-140646 - | 0.900182 MA0265.1
#> [567] chrXVI 919179-919194 - | 0.900182 MA0265.1
#> -------
#> seqinfo: 17 sequences from an unspecified genome; no seqlengths
data(MNase_sacCer3_Henikoff2011)
MNase_sacCer3_Henikoff2011
#> GRanges object with 400000 ranges and 0 metadata columns:
#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chrI 2-116 +
#> [2] chrI 14-66 +
#> [3] chrI 15-134 +
#> [4] chrI 54-167 +
#> [5] chrI 66-104 +
#> ... ... ... ...
#> [399996] chrXVI 920439-920471 -
#> [399997] chrXVI 920439-920486 -
#> [399998] chrXVI 920439-920528 -
#> [399999] chrXVI 920442-920659 -
#> [400000] chrXVI 920454-920683 -
#> -------
#> seqinfo: 17 sequences from an unspecified genome
A preliminary control to check the distribution of fragment sizes (regardless of their location relative to genomic loci) can be performed using the getFragmentsDistribution()
function.
df <- getFragmentsDistribution(
MNase_sacCer3_Henikoff2011,
ABF1_sacCer3
)
#> Warning in as.cls(x): NAs introduced by coercion
#> Warning in as.cls(x): NAs introduced by coercion
#> Warning in as.cls(x): NAs introduced by coercion
p <- ggplot(df, aes(x = x, y = y)) + geom_line() + theme_ggplot2()
p
#> Warning: Removed 2 row(s) containing missing values (geom_path).
Once data is imported, a V-plot of paired-end fragments over loci of interest is generated using the plotVmat()
function:
The generation of multiple V-plots can be parallelized using a list of parameters:
list_params <- list(
"MNase\n@ ABF1" = list(MNase_sacCer3_Henikoff2011, ABF1_sacCer3),
"MNase\n@ random loci" = list(
MNase_sacCer3_Henikoff2011, sampleGRanges(ABF1_sacCer3)
)
)
p <- plotVmat(
list_params,
cores = 1
)
#> - Processing sample 1/2
#> - Processing sample 2/2
p
For instance, ATAC-seq fragment density can be visualized at different classes of ubiquitous and tissue-specific promoters in C. elegans.
list_params <- list(
"Germline ATACseq\n@ Ubiq. proms" = list(
ATAC_ce11_Serizay2020[['Germline']],
ce11_proms[ce11_proms$which.tissues == 'Ubiq.']
),
"Germline ATACseq\n@ Germline proms" = list(
ATAC_ce11_Serizay2020[['Germline']],
ce11_proms[ce11_proms$which.tissues == 'Germline']
),
"Neuron ATACseq\n@ Ubiq. proms" = list(
ATAC_ce11_Serizay2020[['Neurons']],
ce11_proms[ce11_proms$which.tissues == 'Ubiq.']
),
"Neuron ATACseq\n@ Neuron proms" = list(
ATAC_ce11_Serizay2020[['Neurons']],
ce11_proms[ce11_proms$which.tissues == 'Neurons']
)
)
p <- plotVmat(
list_params,
cores = 1,
nrow = 2, ncol = 5
)
#> - Processing sample 1/4
#> - Processing sample 2/4
#> - Processing sample 3/4
#> - Processing sample 4/4
p
Different normalization approaches are available using the normFun
argument.
normFun = 'none'
.# No normalization
p <- plotVmat(
list_params,
cores = 1,
nrow = 2, ncol = 5,
verbose = FALSE,
normFun = 'none'
)
#> Computing V-mat
#> Normalizing the matrix
#> No normalization applied
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> No normalization applied
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> No normalization applied
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> No normalization applied
#> Smoothing the matrix
p
# Library depth + number of loci of interest (default)
p <- plotVmat(
list_params,
cores = 1,
nrow = 2, ncol = 5,
verbose = FALSE,
normFun = 'libdepth+nloci'
)
#> Computing V-mat
#> Normalizing the matrix
#> Computing raw library depth
#> Dividing Vmat by its number of loci
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Computing raw library depth
#> Dividing Vmat by its number of loci
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Computing raw library depth
#> Dividing Vmat by its number of loci
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Computing raw library depth
#> Dividing Vmat by its number of loci
#> Smoothing the matrix
p
# Zscore
p <- plotVmat(
list_params,
cores = 1,
nrow = 2, ncol = 5,
verbose = FALSE,
normFun = 'zscore'
)
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
p
# Quantile
p <- plotVmat(
list_params,
cores = 1,
nrow = 2, ncol = 5,
verbose = FALSE,
normFun = 'quantile',
s = 0.99
)
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
#> Computing V-mat
#> Normalizing the matrix
#> Smoothing the matrix
p
VplotR also implements a function to profile the footprint from MNase or ATAC-seq over sets of genomic loci. For instance, CTCF is known for its ~40-bp large footprint at its binding loci.
VplotR provides a function to plot the distribution of paired-end fragments over an individual genomic window.
data(MNase_sacCer3_Henikoff2011_subset)
genes_sacCer3 <- GenomicFeatures::genes(TxDb.Scerevisiae.UCSC.sacCer3.sgdGene::
TxDb.Scerevisiae.UCSC.sacCer3.sgdGene
)
p <- plotProfile(
fragments = MNase_sacCer3_Henikoff2011_subset,
window = "chrXV:186,400-187,400",
loci = ABF1_sacCer3,
annots = genes_sacCer3,
min = 20, max = 200, alpha = 0.1, size = 1.5
)
#> Filtering and resizing fragments
#> 32276 fragments mapped over 1001 bases
#> Filtering and resizing fragments
#> Generating plot
#> Warning: Removed 49 row(s) containing missing values (geom_path).
#> Warning: Removed 5176 rows containing missing values (geom_point).
#> Warning: Removed 19 row(s) containing missing values (geom_path).
p
sessionInfo()
#> R version 4.1.0 (2021-05-18)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 20.04.2 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
#> LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] parallel stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] VplotR_1.2.0 magrittr_2.0.1 ggplot2_3.3.3
#> [4] GenomicRanges_1.44.0 GenomeInfoDb_1.28.0 IRanges_2.26.0
#> [7] S4Vectors_0.30.0 BiocGenerics_0.38.0
#>
#> loaded via a namespace (and not attached):
#> [1] bitops_1.0-7
#> [2] matrixStats_0.58.0
#> [3] bit64_4.0.5
#> [4] filelock_1.0.2
#> [5] RColorBrewer_1.1-2
#> [6] progress_1.2.2
#> [7] httr_1.4.2
#> [8] tools_4.1.0
#> [9] bslib_0.2.5.1
#> [10] utf8_1.2.1
#> [11] R6_2.5.0
#> [12] DBI_1.1.1
#> [13] colorspace_2.0-1
#> [14] withr_2.4.2
#> [15] tidyselect_1.1.1
#> [16] prettyunits_1.1.1
#> [17] bit_4.0.4
#> [18] curl_4.3.1
#> [19] compiler_4.1.0
#> [20] Biobase_2.52.0
#> [21] DelayedArray_0.18.0
#> [22] rtracklayer_1.52.0
#> [23] labeling_0.4.2
#> [24] sass_0.4.0
#> [25] scales_1.1.1
#> [26] rappdirs_0.3.3
#> [27] stringr_1.4.0
#> [28] digest_0.6.27
#> [29] Rsamtools_2.8.0
#> [30] rmarkdown_2.8
#> [31] XVector_0.32.0
#> [32] pkgconfig_2.0.3
#> [33] htmltools_0.5.1.1
#> [34] MatrixGenerics_1.4.0
#> [35] dbplyr_2.1.1
#> [36] fastmap_1.1.0
#> [37] highr_0.9
#> [38] rlang_0.4.11
#> [39] RSQLite_2.2.7
#> [40] TxDb.Scerevisiae.UCSC.sacCer3.sgdGene_3.2.2
#> [41] jquerylib_0.1.4
#> [42] BiocIO_1.2.0
#> [43] farver_2.1.0
#> [44] generics_0.1.0
#> [45] zoo_1.8-9
#> [46] jsonlite_1.7.2
#> [47] BiocParallel_1.26.0
#> [48] dplyr_1.0.6
#> [49] RCurl_1.98-1.3
#> [50] GenomeInfoDbData_1.2.6
#> [51] Matrix_1.3-3
#> [52] Rcpp_1.0.6
#> [53] munsell_0.5.0
#> [54] fansi_0.4.2
#> [55] lifecycle_1.0.0
#> [56] stringi_1.6.2
#> [57] yaml_2.2.1
#> [58] SummarizedExperiment_1.22.0
#> [59] zlibbioc_1.38.0
#> [60] plyr_1.8.6
#> [61] BiocFileCache_2.0.0
#> [62] grid_4.1.0
#> [63] blob_1.2.1
#> [64] crayon_1.4.1
#> [65] lattice_0.20-44
#> [66] Biostrings_2.60.0
#> [67] cowplot_1.1.1
#> [68] GenomicFeatures_1.44.0
#> [69] hms_1.1.0
#> [70] KEGGREST_1.32.0
#> [71] knitr_1.33
#> [72] pillar_1.6.1
#> [73] rjson_0.2.20
#> [74] reshape2_1.4.4
#> [75] biomaRt_2.48.0
#> [76] XML_3.99-0.6
#> [77] glue_1.4.2
#> [78] evaluate_0.14
#> [79] vctrs_0.3.8
#> [80] png_0.1-7
#> [81] gtable_0.3.0
#> [82] purrr_0.3.4
#> [83] assertthat_0.2.1
#> [84] cachem_1.0.5
#> [85] xfun_0.23
#> [86] restfulr_0.0.13
#> [87] tibble_3.1.2
#> [88] GenomicAlignments_1.28.0
#> [89] AnnotationDbi_1.54.0
#> [90] memoise_2.0.0
#> [91] ellipsis_0.3.2