BiocNeighbors 1.10.0
The BiocNeighbors package implements a few algorithms for exact nearest neighbor searching:
Both KMKNN and VP-trees involve a component of randomness during index construction, though the k-nearest neighbors result is fully deterministic1 Except in the presence of ties, see ?"BiocNeighbors-ties"
for details..
The most obvious application is to perform a k-nearest neighbors search. We’ll mock up an example here with a hypercube of points, for which we want to identify the 10 nearest neighbors for each point.
nobs <- 10000
ndim <- 20
data <- matrix(runif(nobs*ndim), ncol=ndim)
The findKNN()
method expects a numeric matrix as input with data points as the rows and variables/dimensions as the columns.
We indicate that we want to use the KMKNN algorithm by setting BNPARAM=KmknnParam()
(which is also the default, so this is not strictly necessary here).
We could use a VP tree instead by setting BNPARAM=VptreeParam()
.
fout <- findKNN(data, k=10, BNPARAM=KmknnParam())
head(fout$index)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 7389 1450 2164 9211 7194 4443 9111 803 3126 4575
## [2,] 160 546 9618 1800 3617 1006 834 7920 3807 1834
## [3,] 5454 529 233 1240 6736 9751 4592 4785 6988 2221
## [4,] 489 8267 3749 2533 3593 5144 7229 9924 8080 3132
## [5,] 9370 8464 5536 6041 4117 8928 6982 3942 7181 9119
## [6,] 6173 2112 6177 5850 3322 8184 64 1704 1265 6995
head(fout$distance)
## [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,] 1.0191862 1.0287630 1.0781962 1.0882660 1.1263916 1.1276476 1.1486515
## [2,] 0.8373512 0.9119985 0.9125318 0.9232977 0.9310514 0.9336446 0.9569254
## [3,] 0.8630420 0.9878666 1.0299327 1.0332656 1.0421341 1.0990158 1.1030762
## [4,] 0.9630268 1.0121882 1.0215013 1.0874147 1.1002334 1.1085028 1.1131320
## [5,] 0.9092166 0.9607478 0.9669230 0.9706720 1.0064631 1.0389461 1.0681980
## [6,] 1.0057431 1.0535690 1.0613942 1.0650245 1.0650918 1.0792601 1.0903098
## [,8] [,9] [,10]
## [1,] 1.149139 1.1560334 1.1646049
## [2,] 0.958047 0.9643782 0.9722215
## [3,] 1.113153 1.1140538 1.1651180
## [4,] 1.119254 1.1240496 1.1353650
## [5,] 1.085290 1.0873903 1.0944883
## [6,] 1.090889 1.1048695 1.1184216
Each row of the index
matrix corresponds to a point in data
and contains the row indices in data
that are its nearest neighbors.
For example, the 3rd point in data
has the following nearest neighbors:
fout$index[3,]
## [1] 5454 529 233 1240 6736 9751 4592 4785 6988 2221
… with the following distances to those neighbors:
fout$distance[3,]
## [1] 0.8630420 0.9878666 1.0299327 1.0332656 1.0421341 1.0990158 1.1030762
## [8] 1.1131533 1.1140538 1.1651180
Note that the reported neighbors are sorted by distance.
Another application is to identify the k-nearest neighbors in one dataset based on query points in another dataset. Again, we mock up a small data set:
nquery <- 1000
ndim <- 20
query <- matrix(runif(nquery*ndim), ncol=ndim)
We then use the queryKNN()
function to identify the 5 nearest neighbors in data
for each point in query
.
qout <- queryKNN(data, query, k=5, BNPARAM=KmknnParam())
head(qout$index)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 4511 6778 127 9241 2451
## [2,] 8371 8130 6141 6190 4871
## [3,] 7072 9878 1706 2136 2877
## [4,] 6004 8387 463 6508 8215
## [5,] 1396 7610 1218 4706 5291
## [6,] 3543 7057 5913 3415 4186
head(qout$distance)
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.9408713 0.9821246 1.0343322 1.0367641 1.0424123
## [2,] 0.9023687 0.9440995 0.9831849 1.0174269 1.0213958
## [3,] 0.9290601 0.9838771 0.9892178 1.0400482 1.0841410
## [4,] 0.7644032 0.8516743 0.8601078 0.8895502 0.9249100
## [5,] 0.9652028 0.9978860 1.0026678 1.0127375 1.0430779
## [6,] 0.8654624 0.8911202 0.9048687 0.9236370 0.9436597
Each row of the index
matrix contains the row indices in data
that are the nearest neighbors of a point in query
.
For example, the 3rd point in query
has the following nearest neighbors in data
:
qout$index[3,]
## [1] 7072 9878 1706 2136 2877
… with the following distances to those neighbors:
qout$distance[3,]
## [1] 0.9290601 0.9838771 0.9892178 1.0400482 1.0841410
Again, the reported neighbors are sorted by distance.
Users can perform the search for a subset of query points using the subset=
argument.
This yields the same result as but is more efficient than performing the search for all points and subsetting the output.
findKNN(data, k=5, subset=3:5)
## $index
## [,1] [,2] [,3] [,4] [,5]
## [1,] 5454 529 233 1240 6736
## [2,] 489 8267 3749 2533 3593
## [3,] 9370 8464 5536 6041 4117
##
## $distance
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.8630420 0.9878666 1.029933 1.033266 1.042134
## [2,] 0.9630268 1.0121882 1.021501 1.087415 1.100233
## [3,] 0.9092166 0.9607478 0.966923 0.970672 1.006463
If only the indices are of interest, users can set get.distance=FALSE
to avoid returning the matrix of distances.
This will save some time and memory.
names(findKNN(data, k=2, get.distance=FALSE))
## [1] "index"
It is also simple to speed up functions by parallelizing the calculations with the BiocParallel framework.
library(BiocParallel)
out <- findKNN(data, k=10, BPPARAM=MulticoreParam(3))
For multiple queries to a constant data
, the pre-clustering can be performed in a separate step with buildIndex()
.
The result can then be passed to multiple calls, avoiding the overhead of repeated clustering2 The algorithm type is automatically determined when BNINDEX
is specified, so there is no need to also specify BNPARAM
in the later functions..
pre <- buildIndex(data, BNPARAM=KmknnParam())
out1 <- findKNN(BNINDEX=pre, k=5)
out2 <- queryKNN(BNINDEX=pre, query=query, k=2)
The default setting is to search on the Euclidean distance.
Alternatively, we can use the Manhattan distance by setting distance="Manhattan"
in the BiocNeighborParam
object.
out.m <- findKNN(data, k=5, BNPARAM=KmknnParam(distance="Manhattan"))
Advanced users may also be interested in the raw.index=
argument, which returns indices directly to the precomputed object rather than to data
.
This may be useful inside package functions where it may be more convenient to work on a common precomputed object.
sessionInfo()
## R version 4.1.0 (2021-05-18)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.13-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.13-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] BiocParallel_1.26.0 BiocNeighbors_1.10.0 knitr_1.33
## [4] BiocStyle_2.20.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.6 magrittr_2.0.1 BiocGenerics_0.38.0
## [4] lattice_0.20-44 R6_2.5.0 rlang_0.4.11
## [7] stringr_1.4.0 tools_4.1.0 parallel_4.1.0
## [10] grid_4.1.0 xfun_0.23 jquerylib_0.1.4
## [13] htmltools_0.5.1.1 yaml_2.2.1 digest_0.6.27
## [16] bookdown_0.22 Matrix_1.3-3 BiocManager_1.30.15
## [19] S4Vectors_0.30.0 sass_0.4.0 evaluate_0.14
## [22] rmarkdown_2.8 stringi_1.6.2 compiler_4.1.0
## [25] bslib_0.2.5.1 stats4_4.1.0 jsonlite_1.7.2
Wang, X. 2012. “A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.” Proc Int Jt Conf Neural Netw 43 (6): 2351–8.
Yianilos, P. N. 1993. “Data Structures and Algorithms for Nearest Neighbor Search in General Metric Spaces.” In SODA, 93:311–21. 194.