vc_score_h {dearseq} | R Documentation |
This function computes an approximation of the variance component test for
homogeneous trajectory based on the asymptotic distribution of a mixture of
χ^{2}s using Davies method from davies
vc_score_h(y, x, indiv, phi, w, Sigma_xi = diag(ncol(phi)), na_rm = FALSE)
y |
a numeric matrix of dim |
x |
a numeric design matrix of dim |
indiv |
a vector of length |
phi |
a numeric design matrix of size |
w |
a vector of length |
Sigma_xi |
a matrix of size |
na_rm |
logical: should missing values (including |
A list with the following elements:
score
: approximation of the set observed score
q
: observation-level contributions to the score
q_ext
: pseudo-observations used to compute covariance
taking into account the contributions of OLS estimates
gene_scores
: approximation of the individual gene scores
set.seed(123) ##generate some fake data ######################## ng <- 100 nindiv <- 30 nt <- 5 nsample <- nindiv*nt tim <- matrix(rep(1:nt), nindiv, ncol=1, nrow=nsample) tim <- cbind(tim, tim^2) sigma <- 5 b0 <- 10 #under the null: beta1 <- rnorm(n=ng, 0, sd=0) #under the (heterogen) alternative: beta1 <- rnorm(n=ng, 0, sd=0.1) #under the (homogen) alternative: beta1 <- rnorm(n=ng, 0.06, sd=0) y.tilde <- b0 + rnorm(ng, sd = sigma) y <- t(matrix(rep(y.tilde, nsample), ncol=ng, nrow=nsample, byrow=TRUE) + matrix(rep(beta1, each=nsample), ncol=ng, nrow=nsample, byrow=FALSE)* matrix(rep(tim, ng), ncol=ng, nrow=nsample, byrow=FALSE) + matrix(rnorm(ng*nsample, sd = sigma), ncol=ng, nrow=nsample, byrow=FALSE) ) myindiv <- rep(1:nindiv, each=nt) x <- cbind(1, myindiv/2==floor(myindiv/2)) myw <- matrix(rnorm(nsample*ng, sd=0.1), ncol=nsample, nrow=ng) #run test score_homogen <- vc_score_h(y, x, phi=tim, indiv=myindiv, w=myw, Sigma_xi=cov(tim)) score_homogen$score score_heterogen <- vc_score(y, x, phi=tim, indiv=myindiv, w=myw, Sigma_xi=cov(tim)) score_heterogen$score scoreTest_homogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt), w=matrix(1, ncol=ncol(y), nrow=nrow(y)), Sigma_xi=cov(tim), homogen_traj = TRUE) scoreTest_homogen$set_pval scoreTest_heterogen <- vc_test_asym(y, x, phi=tim, indiv=rep(1:nindiv, each=nt), w=matrix(1, ncol=ncol(y), nrow=nrow(y)), Sigma_xi=cov(tim), homogen_traj = FALSE) scoreTest_heterogen$set_pval