ccfAUC {MesKit}R Documentation

ccfAUC

Description

The tumor heterogeneity was estimated as the area under the curve (AUC) of the cumulative density function from all cancer cell fractions per tumor

Usage

ccfAUC(
  maf,
  patient.id = NULL,
  min.ccf = 0,
  withinTumor = FALSE,
  plot.density = TRUE,
  use.tumorSampleLabel = FALSE,
  ...
)

Arguments

maf

A Maf or MafList object generated by readMaf function.

patient.id

Select the specific patients. Default NULL, all patients are included.

min.ccf

The minimum value of CCF. Default 0.

withinTumor

Calculate between-region heterogeneity within tumor. Default FALSE.

plot.density

Whether to show the density plot. Default TRUE.

use.tumorSampleLabel

Logical (Default: FALSE). Rename the 'Tumor_Sample_Barcode' by 'Tumor_Sample_Label'.

...

Other options passed to subMaf

Value

A list containing AUC of CCF and a graph

References

Charoentong P, Finotello F, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell reports 2017, 18:248-262.

Examples

maf.File <- system.file("extdata/", "CRC_HZ.maf", package = "MesKit")
clin.File <- system.file("extdata/", "CRC_HZ.clin.txt", package = "MesKit")
ccf.File <- system.file("extdata/", "CRC_HZ.ccf.tsv", package = "MesKit")
maf <- readMaf(mafFile=maf.File, clinicalFile = clin.File, ccfFile=ccf.File, refBuild="hg19")
ccfAUC(maf)


[Package MesKit version 1.2.0 Index]