deco-package {deco} | R Documentation |
DECO integrates a two-step methodology to find out outlier behavior of features which could determine a new subclass of samples. Thus, a subsampling method with LIMMA (Stratified Differential Analysis or RDA) will be applied to a omic matrix data, previously normalized. After that, Non-Symmetrical Correspondence Analysis (NSCA) will be computed on frequency matrix of differential events generated by subsampling.
The feature-sample relationships will define stratified profiles with statistical significance. Any new subclass defined could be associated to hidden phenotypic variables.
Package: | deco |
Type: | Package |
Version: | 0.99 |
Date: | 2018-11-15 |
License: | GPL 3.0 |
Francisco Jose Campos Laborie, Jose Manuel Sanchez Santos and Javier De las Rivas.
Maintainer: Francisco Jose Campos Laborie <fjcamlab@usal.es>, Cancer Research Centre (Salamanca) <jrivas@usal.es>
Campos-Laborie, FJ et al. DECO: decompose heterogeneous population cohorts for patient stratification and discovery of sample biomarkers using omic data profiling. (2018)
Scarfo, Irene et al. Identification of a new subclass of ALK negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood (2015). http://dx.doi.org/10.1182/blood-2014-12-614503.
decoRDA
, decoNSCA
, decoReport
, voom
#### ALCL EXAMPLE (Scarfo et al., 2015. Blood) #### ## Group-VS-group comparison ######################## # Loading example data # ######################## # Data from two subtypes (ALK+ and ALK-) of Anaplastic Large Cell Leukemia (ALCL). data(ALCLdata) ## Classes vector to run a supervised analysis to compare both classes. classes.ALCL <- colData(ALCL)[,"Alk.positivity"] names(classes.ALCL) <- colnames(ALCL) #################################### # Parallelization via BiocParallel # #################################### # Non-parallel computing bpparam <- SerialParam() # Computing in shared memory # all cores by deault bpparam <- MulticoreParam() ####################################################################### # RUNNING SUBSAMPLING OF DATA: BINARY design (two classes of samples) # ####################################################################### # if annotation and rm.xy == TRUE, then # library(Homo.sapiens) # Not run as example # sub.ma.3r.1K <- decoRDA(data = assay(ALCL), classes = classes.ALCL, q.val = 0.01, # rm.xy = TRUE, r = NULL, control = "pos", annot = FALSE, bpparam = bpparam, # id.type = "ENSEMBL", iterations = 10000, pack.db = "Homo.sapiens") ######################################################################################### # RUNNING NSCA STEP: Looking for subclasses within a category/class of samples compared # ######################################################################################### # Not run as example # deco.results.ma <- decoNSCA(sub = sub.ma.3r.1K, v = 80, method = "ward.D", bpparam = bpparam, # k.control = 3, k.case = 3, samp.perc = 0.05, rep.thr = 10) # Phenotypical data from TCGA RNAseq samples. colData(ALCL) ######################################################## # PDF report with feature-sample patterns or subgroups # ######################################################## ## Generate PDF report with relevant information and several plots. ## Binary example (ALK+ vs ALK-) -not run as example- # decoReport(deco.results.ma, sub.ma.3r.1K, # pdf.file = "report_example_microarray_binary.pdf", # info.sample = as.data.frame(colData(ALCL)[,8:10]), # cex.names = 0.3, print.annot = TRUE)