predict,biosign-method {biosigner} | R Documentation |
This function predicts values based upon biosign
classifiers trained
on the 'S' signature
## S4 method for signature 'biosign' predict(object, newdata, tierMaxC = "S", ...)
object |
An S4 object of class |
newdata |
Either a data frame or a matrix, containing numeric columns only, with column names identical to the 'x' used for model training with 'biosign'. |
tierMaxC |
Character: Maximum level of tiers to display: Either 'S'or 'A'. |
... |
Currently not used. |
Data frame with the predictions for each classifier as factor columns.
Philippe Rinaudo and Etienne Thevenot (CEA)
## loading the diaplasma dataset data(diaplasma) attach(diaplasma) ## restricting to a smaller dataset for this example featureSelVl <- variableMetadata[, "mzmed"] >= 490 & variableMetadata[, "mzmed"] < 500 dataMatrix <- dataMatrix[, featureSelVl] variableMetadata <- variableMetadata[featureSelVl, ] ## training the classifiers ## a bootI = 5 number of bootstraps is used for this example ## we recommend to keep the default bootI = 50 value for your analyzes set.seed(123) diaSign <- biosign(dataMatrix, sampleMetadata[, "type"], bootI = 5) ## fitted values (for the subsets restricted to the 'S' signatures) sFitDF <- predict(diaSign) ## confusion tables print(lapply(sFitDF, function(predFc) table(actual = sampleMetadata[, "type"], predicted = predFc))) ## balanced accuracies sapply(sFitDF, function(predFc) { conf <- table(sampleMetadata[, "type"], predFc) conf <- sweep(conf, 1, rowSums(conf), "/") mean(diag(conf)) }) ## note that these values are slightly different from the accuracies ## returned by biosign because the latter are computed by using the ## resampling scheme selected by the bootI or crossvalI arguments getAccuracyMN(diaSign)["S", ] detach(diaplasma)