ssea.control {Mergeomics}R Documentation

Add internal positive control modules for MSEA

Description

ssea.control adds positive control modules that includes the top-scored genes based on the marker scores of these genes. The database structure, including identities of the variables, is updated properly.

Usage

ssea.control(job)

Arguments

job

data list including module and gene identities as characters; also including database that has indexed identities for MSEA:

modules: module identities as characters.
genes: gene identities as characters.
moddata: preprocessed module data (indexed identities).
database: database including indexed identities for 
modules, genes, and markers.

Value

job

data list including augmented internal control modules:

modules: augmented module names
moddata: augmented module data
database: augmented database

Author(s)

Ville-Petteri Makinen

References

Shu L, Zhao Y, Kurt Z, Byars SG, Tukiainen T, Kettunen J, Orozco LD, Pellegrini M, Lusis AJ, Ripatti S, Zhang B, Inouye M, Makinen V-P, Yang X. Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems. BMC genomics. 2016;17(1):874.

Examples

## Check the slots for control module;
## if it cannot find any control module, function throws an error,
## if can find control slots, updates the database identities (modules, 
## genes, markers) properly:
job.msea <- list()
job.msea$label <- "hdlc"
job.msea$folder <- "Results"
job.msea$genfile <- system.file("extdata", 
"genes.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$marfile <- system.file("extdata", 
"marker.hdlc_040kb_ld70.human_eliminated.txt", package="Mergeomics")
job.msea$modfile <- system.file("extdata", 
"modules.mousecoexpr.liver.human.txt", package="Mergeomics")
job.msea$inffile <- system.file("extdata", 
"coexpr.info.txt", package="Mergeomics")
job.msea$nperm <- 100 ## default value is 20000

## ssea.start() process takes long time while merging the genes sharing high
## amounts of markers (e.g. loci). it is performed with full module list in
## the vignettes. Here, we used a very subset of the module list (1st 10 mods
## from the original module file) and we collected the corresponding genes
## and markers belonging to these modules:
moddata <- tool.read(job.msea$modfile)
gendata <- tool.read(job.msea$genfile)
mardata <- tool.read(job.msea$marfile)
mod.names <- unique(moddata$MODULE)[1:min(length(unique(moddata$MODULE)),
10)]
moddata <- moddata[which(!is.na(match(moddata$MODULE, mod.names))),]
gendata <- gendata[which(!is.na(match(gendata$GENE, 
unique(moddata$GENE)))),]
mardata <- mardata[which(!is.na(match(mardata$MARKER, 
unique(gendata$MARKER)))),]

## save this to a temporary file and set its path as new job.msea$modfile:
tool.save(moddata, "subsetof.coexpr.modules.txt")
tool.save(gendata, "subsetof.genfile.txt")
tool.save(mardata, "subsetof.marfile.txt")
job.msea$modfile <- "subsetof.coexpr.modules.txt"
job.msea$genfile <- "subsetof.genfile.txt"
job.msea$marfile <- "subsetof.marfile.txt"
## run ssea.start() and prepare for this small set: (due to the huge runtime)
job.msea <- ssea.start(job.msea)
job.msea <- ssea.prepare(job.msea)
job.msea <- ssea.control(job.msea)

## Remove the temporary files used for the test:
file.remove("subsetof.coexpr.modules.txt")
file.remove("subsetof.genfile.txt")
file.remove("subsetof.marfile.txt")

[Package Mergeomics version 1.18.0 Index]