GOZDataSet {GenomicOZone} | R Documentation |
The function prepares an object for outstanding genomic zone analysis. It integrates data, annotation, and analysis parameters into the object and performs additional check on data integrity.
GOZDataSet(data, colData, design, clustering.method = "1C", rowData.GRanges = NULL, ks = NULL, genome = NULL, ensembl.mirror = "www", gene.ID.type = NULL, ncores = 1)
data |
a numerical |
colData |
a |
design |
a one-sided |
clustering.method |
a character string. An option to choose either using |
rowData.GRanges |
an optional genome annotation of |
ks |
an optional numerical vector to specify the number of zones to divide each chromosome into. The names of the |
genome |
an optional value of |
ensembl.mirror |
an optional Ensembl mirror server to connect to. It is used only when |
gene.ID.type |
an optional value of |
ncores |
an optional integer to specify the number of cores to use parallely in outstanding genomic zone analysis. Default is 1. |
The function collects all the input information, checks requirement completeness and integrates the inputs into a list, in preparation for function GenomicOZone
to perform outstanding zone analysis.
A genome annotation parameter of GRanges
class (Lawrence et al. 2013) or a genome version must be assigned by the user. The annotation is used to sort genes by their genomic coordinates. The genome
parameter is for function GenomicOZone
to obtain genome annotation from the R package biomaRt (Smedley et al. 2015) to access Ensembl annotation databases (Zerbino et al. 2017). Using rowData.GRanges
is recommended over using genome
.
A list object with all relevant information for oustanding genomic zone analysis. It will be expanded by further analysis.
Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013).
“Software for computing and annotating genomic ranges.”
PLoS computational biology, 9(8), e1003118.
Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh MH, Baldock R, Barbiera G, others (2015).
“The BioMart community portal: an innovative alternative to large, centralized data repositories.”
Nucleic acids research, 43(W1), W589–W598.
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, others (2017).
“Ensembl 2018.”
Nucleic acids research, 46(D1), D754–D761.
data <- matrix(c(1,5,2,6,5,1,6,2), ncol = 2, byrow = TRUE) rownames(data) <- paste("Gene", 1:4, sep='') colnames(data) <- paste("Sample", c(1:2), sep='') colData <- data.frame(Sample_name = paste("Sample", c(1:2), sep=''), Condition = c("Cancer", "Normal")) design <- ~ Condition rowData.GRanges <- GRanges(seqnames = Rle(rep("chr1", 4)), ranges = IRanges(start = c(1,2,3,4), end = c(5,6,7,8))) names(rowData.GRanges) <- paste("Gene", 1:4, sep='') ks <- c(2) names(ks) <- "chr1" GOZ.ds <- GOZDataSet(data, colData, design, rowData.GRanges = rowData.GRanges, ks = ks)