cellCellSimulate
functionscTensor 1.4.3
Here, we explain the way to generate CCI simulation data.
scTensor has a function cellCellSimulate
to generate the simulation data.
The simplest way to generate such data is cellCellSimulate
with default parameters.
suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
This function internally generate the parameter sets by newCCSParams
,
and the values of the parameter can be changed, and specified as the input of cellCellSimulate
by users as follows.
# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
## ..@ nGene : num 1000
## ..@ nCell : num [1:3] 50 50 50
## ..@ cciInfo:List of 4
## .. ..$ nPair: num 500
## .. ..$ CCI1 :List of 4
## .. .. ..$ LPattern: num [1:3] 1 0 0
## .. .. ..$ RPattern: num [1:3] 0 1 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI2 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 1 0
## .. .. ..$ RPattern: num [1:3] 0 0 1
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## .. ..$ CCI3 :List of 4
## .. .. ..$ LPattern: num [1:3] 0 0 1
## .. .. ..$ RPattern: num [1:3] 1 0 0
## .. .. ..$ nGene : num 50
## .. .. ..$ fc : chr "E10"
## ..@ lambda : num 1
## ..@ seed : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
nPair=500, # Total number of L-R pairs
# 1st CCI
CCI1=list(
LPattern=c(1,0,0), # Only 1st cell type has this pattern
RPattern=c(0,1,0), # Only 2nd cell type has this pattern
nGene=50, # 50 pairs are generated as CCI1
fc="E10"), # Degree of differential expression (Fold Change)
# 2nd CCI
CCI2=list(
LPattern=c(0,1,0),
RPattern=c(0,0,1),
nGene=30,
fc="E100")
)
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123
# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!
The output object sim has some attributes as follows.
Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.
dim(sim$input)
## [1] 1000 60
sim$input[1:2,1:3]
## Cell1 Cell2 Cell3
## Gene1 9105 2 0
## Gene2 4 37 850
Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.
dim(sim$LR)
## [1] 500 2
sim$LR[1:10,]
## GENEID_L GENEID_R
## 1 Gene1 Gene81
## 2 Gene2 Gene82
## 3 Gene3 Gene83
## 4 Gene4 Gene84
## 5 Gene5 Gene85
## 6 Gene6 Gene86
## 7 Gene7 Gene87
## 8 Gene8 Gene88
## 9 Gene9 Gene89
## 10 Gene10 Gene90
sim$LR[46:55,]
## GENEID_L GENEID_R
## 46 Gene46 Gene126
## 47 Gene47 Gene127
## 48 Gene48 Gene128
## 49 Gene49 Gene129
## 50 Gene50 Gene130
## 51 Gene51 Gene131
## 52 Gene52 Gene132
## 53 Gene53 Gene133
## 54 Gene54 Gene134
## 55 Gene55 Gene135
sim$LR[491:500,]
## GENEID_L GENEID_R
## 491 Gene571 Gene991
## 492 Gene572 Gene992
## 493 Gene573 Gene993
## 494 Gene574 Gene994
## 495 Gene575 Gene995
## 496 Gene576 Gene996
## 497 Gene577 Gene997
## 498 Gene578 Gene998
## 499 Gene579 Gene999
## 500 Gene580 Gene1000
Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.
length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1
## "Cell1" "Cell2" "Cell3" "Cell4" "Cell5" "Cell6"
table(names(sim$celltypes))
##
## Celltype1 Celltype2 Celltype3
## 20 20 20
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.4 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.11-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.11-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] AnnotationHub_2.20.0
## [2] BiocFileCache_1.12.0
## [3] dbplyr_1.4.4
## [4] Homo.sapiens_1.3.1
## [5] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [6] org.Hs.eg.db_3.11.4
## [7] GO.db_3.11.4
## [8] OrganismDbi_1.30.0
## [9] GenomicFeatures_1.40.0
## [10] AnnotationDbi_1.50.0
## [11] MeSH.Mmu.eg.db_1.13.0
## [12] LRBase.Mmu.eg.db_1.2.0
## [13] MeSH.Hsa.eg.db_1.13.0
## [14] MeSHDbi_1.24.0
## [15] SingleCellExperiment_1.10.1
## [16] SummarizedExperiment_1.18.1
## [17] DelayedArray_0.14.0
## [18] matrixStats_0.56.0
## [19] Biobase_2.48.0
## [20] GenomicRanges_1.40.0
## [21] GenomeInfoDb_1.24.2
## [22] IRanges_2.22.2
## [23] S4Vectors_0.26.1
## [24] BiocGenerics_0.34.0
## [25] scTensor_1.4.3
## [26] RSQLite_2.2.0
## [27] LRBase.Hsa.eg.db_1.2.0
## [28] LRBaseDbi_1.6.0
## [29] BiocStyle_2.16.0
##
## loaded via a namespace (and not attached):
## [1] rsvd_1.0.3 Hmisc_4.4-0
## [3] ica_1.0-2 Rsamtools_2.4.0
## [5] foreach_1.5.0 lmtest_0.9-37
## [7] crayon_1.3.4 MASS_7.3-51.6
## [9] nlme_3.1-148 backports_1.1.8
## [11] GOSemSim_2.14.0 rlang_0.4.6
## [13] XVector_0.28.0 ROCR_1.0-11
## [15] irlba_2.3.3 nnTensor_1.0.5
## [17] GOstats_2.54.0 BiocParallel_1.22.0
## [19] tagcloud_0.6 bit64_0.9-7
## [21] glue_1.4.1 sctransform_0.2.1
## [23] dotCall64_1.0-0 DOSE_3.14.0
## [25] tidyselect_1.1.0 fitdistrplus_1.1-1
## [27] XML_3.99-0.3 tidyr_1.1.0
## [29] zoo_1.8-8 GenomicAlignments_1.24.0
## [31] xtable_1.8-4 magrittr_1.5
## [33] evaluate_0.14 ggplot2_3.3.2
## [35] zlibbioc_1.34.0 rstudioapi_0.11
## [37] rpart_4.1-15 fastmatch_1.1-0
## [39] ensembldb_2.12.1 maps_3.3.0
## [41] fields_10.3 shiny_1.5.0
## [43] xfun_0.15 askpass_1.1
## [45] cluster_2.1.0 caTools_1.18.0
## [47] tidygraph_1.2.0 TSP_1.1-10
## [49] tibble_3.0.1 interactiveDisplayBase_1.26.3
## [51] ggrepel_0.8.2 biovizBase_1.36.0
## [53] ape_5.4 listenv_0.8.0
## [55] dendextend_1.13.4 Biostrings_2.56.0
## [57] png_0.1-7 future_1.17.0
## [59] bitops_1.0-6 ggforce_0.3.2
## [61] RBGL_1.64.0 plyr_1.8.6
## [63] GSEABase_1.50.1 AnnotationFilter_1.12.0
## [65] pillar_1.4.4 gplots_3.0.3
## [67] graphite_1.34.0 europepmc_0.4
## [69] vctrs_0.3.1 ellipsis_0.3.1
## [71] generics_0.0.2 plot3D_1.3
## [73] urltools_1.7.3 MeSH.Aca.eg.db_1.13.0
## [75] outliers_0.14 tools_4.0.0
## [77] foreign_0.8-80 entropy_1.2.1
## [79] munsell_0.5.0 tweenr_1.0.1
## [81] fgsea_1.14.0 fastmap_1.0.1
## [83] compiler_4.0.0 abind_1.4-5
## [85] httpuv_1.5.4 rtracklayer_1.48.0
## [87] Gviz_1.32.0 plotly_4.9.2.1
## [89] GenomeInfoDbData_1.2.3 gridExtra_2.3
## [91] lattice_0.20-41 visNetwork_2.0.9
## [93] AnnotationForge_1.30.1 later_1.1.0.1
## [95] dplyr_1.0.0 jsonlite_1.7.0
## [97] concaveman_1.1.0 scales_1.1.1
## [99] graph_1.66.0 pbapply_1.4-2
## [101] genefilter_1.70.0 lazyeval_0.2.2
## [103] promises_1.1.1 MeSH.db_1.13.0
## [105] latticeExtra_0.6-29 reticulate_1.16
## [107] checkmate_2.0.0 rmarkdown_2.3
## [109] cowplot_1.0.0 schex_1.2.0
## [111] MeSH.Syn.eg.db_1.13.0 webshot_0.5.2
## [113] Rtsne_0.15 dichromat_2.0-0
## [115] BSgenome_1.56.0 uwot_0.1.8
## [117] igraph_1.2.5 gclus_1.3.2
## [119] survival_3.2-3 yaml_2.2.1
## [121] plotrix_3.7-8 htmltools_0.5.0
## [123] memoise_1.1.0 VariantAnnotation_1.34.0
## [125] rTensor_1.4.1 Seurat_3.1.5
## [127] seriation_1.2-8 graphlayouts_0.7.0
## [129] viridisLite_0.3.0 digest_0.6.25
## [131] assertthat_0.2.1 ReactomePA_1.32.0
## [133] mime_0.9 rappdirs_0.3.1
## [135] registry_0.5-1 spam_2.5-1
## [137] future.apply_1.5.0 misc3d_0.8-4
## [139] data.table_1.12.8 blob_1.2.1
## [141] cummeRbund_2.30.0 splines_4.0.0
## [143] Formula_1.2-3 ProtGenerics_1.20.0
## [145] RCurl_1.98-1.2 hms_0.5.3
## [147] colorspace_1.4-1 base64enc_0.1-3
## [149] BiocManager_1.30.10 nnet_7.3-14
## [151] Rcpp_1.0.4.6 bookdown_0.20
## [153] RANN_2.6.1 MeSH.PCR.db_1.13.0
## [155] enrichplot_1.8.1 R6_2.4.1
## [157] grid_4.0.0 ggridges_0.5.2
## [159] lifecycle_0.2.0 acepack_1.4.1
## [161] curl_4.3 MeSH.Bsu.168.eg.db_1.13.0
## [163] gdata_2.18.0 leiden_0.3.3
## [165] MeSH.AOR.db_1.13.0 meshr_1.24.1
## [167] DO.db_2.9 Matrix_1.2-18
## [169] qvalue_2.20.0 RcppAnnoy_0.0.16
## [171] RColorBrewer_1.1-2 iterators_1.0.12
## [173] stringr_1.4.0 htmlwidgets_1.5.1
## [175] polyclip_1.10-0 triebeard_0.3.0
## [177] biomaRt_2.44.1 purrr_0.3.4
## [179] gridGraphics_0.5-0 reactome.db_1.70.0
## [181] globals_0.12.5 openssl_1.4.2
## [183] htmlTable_2.0.0 patchwork_1.0.1
## [185] codetools_0.2-16 gtools_3.8.2
## [187] prettyunits_1.1.1 gtable_0.3.0
## [189] tsne_0.1-3 DBI_1.1.0
## [191] highr_0.8 httr_1.4.1
## [193] KernSmooth_2.23-17 stringi_1.4.6
## [195] progress_1.2.2 reshape2_1.4.4
## [197] farver_2.0.3 heatmaply_1.1.0
## [199] annotate_1.66.0 viridis_0.5.1
## [201] hexbin_1.28.1 fdrtool_1.2.15
## [203] Rgraphviz_2.32.0 magick_2.4.0
## [205] xml2_1.3.2 rvcheck_0.1.8
## [207] ggplotify_0.0.5 Category_2.54.0
## [209] BiocVersion_3.11.1 bit_1.1-15.2
## [211] scatterpie_0.1.4 jpeg_0.1-8.1
## [213] ggraph_2.0.3 pkgconfig_2.0.3
## [215] knitr_1.29