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Abstract

Background The recent application of modern automation technologies to staining and collecting
flow cytometry (FCM) samples has led to many new challenges in data management and analysis.
We limit our attention here to the associated problems in the analysis of the massive amounts of
FCM data now being collected. From our viewpoint, see two related but substantially different
problems arising. On the one hand, there is the problem of adapting existing software to apply
standard methods to the increased volume of data. The second problem, which we intend to ad-
dress here, is the absence of any research platform which bioinformaticians, computer scientists,
and statisticians can use to develop novel methods that address both the volume and multidimen-
sionality of the mounting tide of data. In our opinion, such a platform should be Open Source,
be focused on visualization, support rapid prototyping, have a large existing base of users, and
have demonstrated suitability for development of new methods. We believe that the Open Source
statistical software R in conjunction with the Bioconductor Project fills all of these requirements.
Consequently we have developed a Bioconductor package that we call flowCore. The flowCore
package is not intended to be a complete analysis package for FCM data. Rather, we see it as
providing a clear object model and a collection of standard tools that enable R as an informatics
research platform for flow cytometry. One of the important issues that we have addressed in the
flowCore package is that of using a standardized representation that will insure compatibility with
existing technologies for data analysis and will support collaboration and interoperability of new
methods as they are developed. In order to do this, we have followed the current standardized de-
scriptions of FCM data analysis as being developed under NIH Grant xxxx [n]. We believe that
researchers will find flowCore to be a solid foundation for future development of new methods to
attack the many interesting open research questions in FCM data analysis.

Methods We propose a variety of data structures. We have implemented the classes and methods
in the Bioconductor package flowCore. We illustrate their use with X case studies.

Results We hope that those proposed data structures will be the base for the development of many
tools for the analysis of high throughput flow cytometry.

keywords Flow cytometry, high throughput, software, standard

1 Introduction

Traditionally, flow cytometry has been a tube-based technique limited to small-scale laboratory and
clinical studies. High throughput methods for flow cytometry have recently been developed for drug
discovery and advanced research methods (Gasparetto et al., 2004). As an example, the flow cytometry
high content screening (FC-HCS) can process up to a thousand samples daily at a single workstation,
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and the results have been equivalent or superior to traditional manual multi-parameter staining and
analysis techniques.

The amount of information generated by high throughput technologies such as FC-HCS need to
be transformed into executive summaries (which are brief enough) for creative studies by a human
researcher (Brazma, 2001). Standardization is critical when developing new high throughput technolo-
gies and their associated information services (Brazma, 2001; Chicurel, 2002; Boguski and McIntosh,
2003). Standardization efforts have been made in clinical cell analysis by flow cytometry (Keeney et al.,
2004), however data interpretation has not been standardized for even low throughput FCM. It is one
of the most difficult and time consuming aspects of the entire analytical process as well as a primary
source of variation in clinical tests, and investigators have traditionally relied on intuition rather than
standardized statistical inference (Bagwell, 2004; Braylan, 2004; Parks, 1997; Suni et al., 2003). In
the development of standards in high throughput FCM, little progress has been made in terms of Open
Source software. In this article we propose R data structures to handle flow cytometry data through the
main steps of preprocessing: compensation, transformation, filtering.

The aim is to merge both prada and rflowcyt (LeMeur and Hahne, 2006) into one core package
which is compliant with the data exchange standards that are currently developed in the community
(Spidlen et al., 2006).

Visualization as well as quality control will then be part of the utility packages that depend on the
data structures defined in the flowCore package.

2 Representing Flow Cytometry Data

flowCore’s primary task is the representation and basic manipulation of flow cytometry (or similar)
data. This is accomplished through a data model very similar to that adopted by other Bioconduc-
tor packages using the expressionSet and AnnotatedDataFrame structures familiar to most
Bioconductor users.

2.1 The flowFrame Class

The basic unit of manipulation in flowCore is the flowFrame, which corresponds roughly to a single
“FCS” file exported from the flow cytometer’s acquisition software. At the moment we support FCS
file versions 2.0 through 3.1, and we expect to support FCS4/ACS1 as soon as the specification has
been ratified.

2.1.1 Data elements

The primary elements of the flowFrame are the exprs and parameters slots, which contain the
event-level information and column metadata respectively. The event information, stored as a single
matrix, is accessed and manipulated via the exprs() and exprs<- methods, allowing flowFrames
to be stitched together if necessary (for example, if the same tube has been collected in two acquisition
files for memory reasons).

The parameters slot is an AnnotatedDataFrame that contains information derived from an FCS
file’s “$Pn” keywords, which describe the detector and stain information. The entire list is available
via the parameter() method, but more commonly this information is accessed through the names,
featureNames and colnames methods. The names function returns a concatenated version of
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colnames and featureNames using a format similar to the one employed by most flow cytome-
try analysis software. The colnames method returns the detector names, often named for the fluo-
rochrome detected, while the featureNames method returns the description field of the parameters,
which will typically be an identifier for the antibody.

The keyword method allows access to the raw FCS keywords, which are a mix of standard entries
such as “SAMPLE ID,” vendor specific keywords and user-defined keywords that add more information
about an experiment. In the case of plate-based experiments, there are also one or more keywords that
identify the specific well on the plate.

Most vendor software also includes some sort of unique identifier for the file itself. The specialized
method identifier attempts to locate an appropriate globally unique identifier that can be used to
uniquely identify a frame. Failing that, this method will return the original file name offering some
assurance that this frame is at least unique to a particular session.

2.2 The flowSet Class

Most experiments consist of several flowFrame objects, which are organized using a flowSet object.
This class provides a mechanism for efficiently hosting the flowFrames with minimal copying. This
reduces memory requirements and ensures that experimental metadata stay properly attached to their
corresponding flowFrames.

3 Reading and Manipulating flowCore Data Classes

3.1 Reading an FCS file into a flowFrame

FCS files are read into the R environment via the read.FCS function using the standard connection
interface—allowing for the possibility of accessing FCS files hosted on a remote resource as well as
those that have been compressed or even retrieved as a blob from a database interface. FCS files
(version 2.0, 3.0, and 3.1) and LMD (List Mode Data) extensions are currently supported.

There are also several immediate processing options available in this function, the most important
of which is the transformation parameter, which can “linearize” (the default), “linearize-with-
PnG-scaling”, or “scale” our data. To see how this works, first we will examine an FCS file without
any transformation at all:

file.name <- system.file("extdata","0877408774.B08",
package="flowCore")

x <- read.FCS(file.name, transformation=FALSE)
summary(x)

## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
## Min. 85.0000 11.0000 0.0000 0.0000 0.0000 0.0000 0.0000
## 1st Qu. 385.0000 141.0000 233.0000 277.0000 90.0000 0.0000 210.0000
## Median 441.0000 189.0000 545.5000 346.0000 193.0000 26.0000 279.0000
## Mean 491.9644 277.9105 439.1023 366.1567 179.7122 34.0766 323.5306
## 3rd Qu. 518.0000 270.0000 610.0000 437.0000 264.0000 51.0000 390.0000
## Max. 1023.0000 1023.0000 912.0000 1023.0000 900.0000 1023.0000 1022.0000

3



## Time
## Min. 1.00
## 1st Qu. 122.00
## Median 288.00
## Mean 294.77
## 3rd Qu. 457.50
## Max. 626.00

As we can see, in this case the values from each parameter seem to run from 0 to 1023 (210 − 1).
However, inspection of the documentation of the “exponentiation” keyword ($PnE) reveals that some
of the parameters (3 and 4) have been stored in a format specifying that the channel values should be
scaled as y = f2 × 10f1·x/R where x is the original channel value, y is the scaled value, f1 and f2 are
given respectively by the first and second element of the value of the $PnE key and R is the channel
range given by the value of the $PnR key. The special $PnE value of “0, 0” corresponds to a scale that
is already linear.

keyword(x,c("$P1E", "$P2E", "$P3E", "$P4E"))

## $`$P1E`
## [1] "0,0"
##
## $`$P2E`
## [1] "0,0"
##
## $`$P3E`
## [1] "4,1"
##
## $`$P4E`
## [1] "4,1"

The default “linearize” transformation option will convert these to, effectively, have a $PnE value
of “0, 0”:

summary(read.FCS(file.name))

## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A
## Min. 85.0000 11.0000 1.00000 1.00000 1.000000 0.0000
## 1st Qu. 385.0000 141.0000 8.13123 12.07901 2.246790 0.0000
## Median 441.0000 189.0000 135.16485 22.46790 5.674221 26.0000
## Mean 491.9644 277.9105 157.79417 105.98637 8.464880 34.0766
## 3rd Qu. 518.0000 270.0000 241.44182 50.93675 10.746078 51.0000
## Max. 1023.0000 1023.0000 3651.74127 9910.45856 3278.121151 1023.0000
## FL4-H Time
## Min. 1.00000 1.00
## 1st Qu. 6.61169 122.00
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## Median 12.29826 288.00
## Mean 140.39784 294.77
## 3rd Qu. 33.37625 457.50
## Max. 9821.71889 626.00

The “linearize-with-PnG-scaling” option will perform the previous transformation and it will also
apply a “division by gain” to parameters stored on linear scale with specified gain. The gain is specified
in the $PnG keyword. This option has been introduced as part of Gating-ML 2.0 compliance.

Finally, the “scale” option will both linearize values as well as ensure that output values are con-
tained in [0, 1], which is the proposed method of data storage for the ACS1.0/FCS4.0 specification:

summary(read.FCS(file.name,transformation="scale"))

## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A
## Min. 0.08308895 0.01075269 0.0000000000 0.000000000 0.0000000000 0.00000000
## 1st Qu. 0.37634409 0.13782991 0.0007131943 0.001108012 0.0001246915 0.00000000
## Median 0.43108504 0.18475073 0.0134178268 0.002147005 0.0004674689 0.02541544
## Mean 0.48090362 0.27166227 0.0156809848 0.010499687 0.0007465626 0.03331046
## 3rd Qu. 0.50635386 0.26392962 0.0240465869 0.004994175 0.0009747053 0.04985337
## Max. 1.00000000 1.00000000 0.3651106383 0.991044961 0.3277448896 1.00000000
## FL4-H Time
## Min. 0.0000000000 0.0009775171
## 1st Qu. 0.0005612251 0.1192570870
## Median 0.0011299392 0.2815249267
## Mean 0.0139411784 0.2881427175
## 3rd Qu. 0.0032379485 0.4472140762
## Max. 0.9821701062 0.6119257087

Another parameter of interest is the alter.names parameter, which will convert the parameter
names into more “R friendly” equivalents, usually by replacing “-” with “.”:

read.FCS(file.name,alter.names=TRUE)

## flowFrame object '0877408774.B08'
## with 10000 cells and 8 observables:
## name desc range minRange maxRange
## $P1 FSC.H FSC-H 1024 0.000000 1023
## $P2 SSC.H SSC-H 1024 0.000000 1023
## $P3 FL1.H <NA> 1024 1.009044 10000
## $P4 FL2.H <NA> 1024 1.009044 10000
## $P5 FL3.H <NA> 1024 1.009044 10000
## $P6 FL1.A <NA> 1024 0.000000 1023
## $P7 FL4.H <NA> 1024 1.009044 10000
## $P8 Time Time (51.20 sec.) 1024 0.000000 1023
## 164 keywords are stored in the 'description' slot
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When only a particular subset of parameters is desired, the column.pattern parameter allows
for the specification of a regular expression and only parameters that match the regular expression will
be included in the frame. For example, to include on the Height parameters:

x <- read.FCS(file.name, column.pattern="-H")
x

## flowFrame object '0877408774.B08'
## with 10000 cells and 6 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-H 1024 0.000000 1023
## $P2 SSC-H SSC-H 1024 0.000000 1023
## $P3 FL1-H <NA> 1024 1.009044 10000
## $P4 FL2-H <NA> 1024 1.009044 10000
## $P5 FL3-H <NA> 1024 1.009044 10000
## $P7 FL4-H <NA> 1024 1.009044 10000
## 150 keywords are stored in the 'description' slot

Note that column.pattern is applied after alter.names if it is used.
Finally, only a sample of lines can be read in case you need a quick overview of a large series of

files.

lines <- sample(100:500, 50)
y <- read.FCS(file.name, which.lines = lines)
y

## flowFrame object '0877408774.B08'
## with 50 cells and 8 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-H 1024 0.000000 1023
## $P2 SSC-H SSC-H 1024 0.000000 1023
## $P3 FL1-H <NA> 1024 1.009044 10000
## $P4 FL2-H <NA> 1024 1.009044 10000
## $P5 FL3-H <NA> 1024 1.009044 10000
## $P6 FL1-A <NA> 1024 0.000000 1023
## $P7 FL4-H <NA> 1024 1.009044 10000
## $P8 Time Time (51.20 sec.) 1024 0.000000 1023
## 164 keywords are stored in the 'description' slot

3.2 Creating a flowSet

To facilitate the creation of flowSet objects from a variety of sources, we provide a means to coerce list
and environment objects to a flowSet object using the usual coercion mechanisms. For example, if we
have a directory containing FCS files, we can read in a list of those files and create a flowSet out of
them:
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fcs.dir <- system.file("extdata",
"compdata",
"data",
package="flowCore")

frames <- lapply(dir(fcs.dir, full.names=TRUE), read.FCS)
fs <- as(frames, "flowSet")
fs

## A flowSet with 5 experiments.
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

sampleNames(fs)

## [1] "V1" "V2" "V3" "V4" "V5"

Note that the original list is unnamed and that the resulting sample names are not particularly
meaningful. If the list is named, the list constructed is much more meaningful. One such approach is to
employ the keyword method for flowFrame objects to extract the “SAMPLE ID” keyword from each
frame:

names(frames) <- sapply(frames, keyword, "SAMPLE ID")
fs <- as(frames, "flowSet")
fs

## A flowSet with 5 experiments.
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

sampleNames(fs)

## [1] "NA" "fitc" "pe" "apc" "7AAD"

3.2.1 Working with experimental metadata

Like most Bioconductor organizational classes, the flowSet has an associated AnnotatedDataFrame that
provides metadata not contained within the flowFrame objects themselves. This data frame is accessed
and modified via the usual phenoData and phenoData<- methods. You can also generally treat
the phenotypic data as a normal data frame to add new descriptive columns. For example, we might
want to track the original filename of the frames from above in the phenotypic data for easier access:
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phenoData(fs)$Filename <- fsApply(fs,keyword, "$FIL")
pData(phenoData(fs))

## name Filename
## NA NA 060909.001
## fitc fitc 060909.002
## pe pe 060909.003
## apc apc 060909.004
## 7AAD 7AAD 060909.005

Note that we have used the flowSet-specific iterator, fsApply, which acts much like sapply or
lapply and will be discussed shortly. Additionally, we should also note that the phenoData data
frame must have row names that correspond to the original names used to create the flowSet.

3.2.2 Reading multiple FCS files with read.FlowSet

The process of reading multiple FCS files in to a flowSet is simplified by using the read.flowSet
function. In its simplest incarnation, this function takes a path, which defaults to the current working
directory, and an optional pattern argument that allows only a subset of files contained within the
working directory to be selected. For example, to read a flowSet of the files read in as frames above:

fs <- read.flowSet(path = fcs.dir)

read.flowSet will pass on additional arguments meant for the underlying read.FCS func-
tion, such as alter.names and column.pattern, but also supports several other interesting
arguments for conducting initial processing:

files An alternative to the pattern argument, you may also supply a vector of filenames to read.

name.keyword Like the example in the previous section, you may specify a particular keyword to use
in place of the filename when creating the flowSet.

phenoData If this is an AnnotatedDataFrame, then this will be used in place of the data frame that is
ordinarily created. Additionally, the row names of this object will be taken to be the filenames of
the FCS files in the directory specified by path.

3.2.3 Manipulating a flowSet

You can extract a flowFrame from a flowSet object in the usual way using the [[ or $ extraction
operators. On the other hand using the [ extraction operator returns a new flowSet by copying the
environment. However, simply assigning the flowFrame to a new variable will not copy the contained
frames.

The primary iterator method for a flowSet is the fsApply method, which works more-or-less like
sapply or lapply with two extra options. The first argument, simplify, which defaults to TRUE,
instructs fsApply to attempt to simplify its results much in the same way as sapply. The primary
difference is that if all of the return values of the iterator are flowFrame objects, fsApply will create
a new flowSet object to hold them. The second argument, use.exprs, which defaults to FALSE
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instructs fsApply to pass the expression matrix of each frame rather than the flowFrame object itself.
This allows functions to operate directly on the intensity information without first having to extract it.

As an aid to this sort of operation we also introduce the each row and each col convenience
functions that take the place of apply in the fsApply call. For example, if we wanted the median
value of each parameter of each flowFrame we might write:

fsApply(fs, each_col, median)

## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
## 060909.001 423 128 4.104698 4.531584 3.651741 0 7.233942
## 060909.002 436 128 930.572041 228.757320 33.376247 217 8.278826
## 060909.003 438 120 10.181517 791.475544 114.444190 0 9.305720
## 060909.004 441 129 4.371445 4.869675 4.782858 0 358.663762
## 060909.005 429 133 5.002865 14.989296 63.209339 0 20.908000

which is equivalent to the less readable

fsApply(fs,function(x) apply(x, 2, median), use.exprs=TRUE)

## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
## 060909.001 423 128 4.104698 4.531584 3.651741 0 7.233942
## 060909.002 436 128 930.572041 228.757320 33.376247 217 8.278826
## 060909.003 438 120 10.181517 791.475544 114.444190 0 9.305720
## 060909.004 441 129 4.371445 4.869675 4.782858 0 358.663762
## 060909.005 429 133 5.002865 14.989296 63.209339 0 20.908000

In this case, the use.exprs argument is not required in the first case because each col and
each row are methods and have been defined to work on flowFrame objects by first extracting the
intensity data.

4 Visualizing Flow Cytometry Data

Much of the more sophisticated visualization of flowFrame and flowSet objects, including an interface
to the ggplot2 graphics system is implemented by the ggcyto package, also included as part of Bio-
conductor. Here, we will only introduce the autoplot function for the purpose of demonstrating
flowCore operations. See the vignettes of ggcyto for more examples of how to visualize flow data.

4.1 Visualizing a single flowFrame

It is frequently helpful to view the density of events in a flowFrame across one channel or two.
To create a bivariate density plot, simply provide the appropriate channels:

library(ggcyto)

## Loading required package: ggplot2
## Loading required package: ncdfFlow
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## Loading required package: RcppArmadillo
## Loading required package: BH
## Loading required package: flowWorkspace
## As part of improvements to flowWorkspace, some behavior of
## GatingSet objects has changed. For details, please read the section
## titled "The cytoframe and cytoset classes" in the package vignette:
##
## vignette("flowWorkspace-Introduction", "flowWorkspace")

autoplot(x, "FL1-H", "FL2-H")
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Similarly, to get a univariate densityplot:

autoplot(x, "FL1-H")
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4.2 Visualizing a flowSet

The syntax is basically the same for flowSet objects, with the output now being a grid of plots corre-
sponding to each flowFrame (which may or may not be useful depending on context). The grid layout
can be adjusted with additional arguments to autoplot

fs <- read.flowSet(path = system.file("extdata",
package = "flowCore"),

pattern = "\\.")
autoplot(fs, "FL1-H", "FL2-H")
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5 Compensation

Before proceeding with further analysis of the data in a flowFrame or flowSet, it is important to properly
compensate the data for spectral overlap between fluorescence channels.

5.1 Extracting and applying a pre-calculated spillover matrix

If the original FCS file contains a pre-calculated spillover matrix as the value of the $SPILLOVER or
$SPILL keywords, this can be accessed from the flowFrame’s description slot using the spillover
method:

fcsfiles <- list.files(pattern = "CytoTrol",
system.file("extdata",

package = "flowWorkspaceData"),
full = TRUE)

fs <- read.flowSet(fcsfiles)
x <- fs[[1]]
comp_list <- spillover(x)
comp_list

## $SPILL
## B710-A R660-A R780-A V450-A V545-A
## [1,] 1.000000e+00 3.143890e-02 0.1909655363 3.057568e-03 0.002047231
## [2,] 5.537983e-03 1.000000e+00 0.1768123886 0.000000e+00 0.000000000
## [3,] 9.958625e-05 9.847661e-03 1.0000000000 0.000000e+00 0.000000000
## [4,] 0.000000e+00 8.909845e-05 0.0000000000 1.000000e+00 0.451194675
## [5,] 2.477092e-03 5.235156e-04 0.0000000000 3.796154e-02 1.000000000
## [6,] 1.172236e-01 1.642721e-03 0.0003321532 0.000000e+00 0.000000000
## [7,] 1.420516e-02 4.568956e-04 0.1754022374 8.902497e-05 0.000000000
## G560-A G780-A
## [1,] 3.442413e-04 0.071933810
## [2,] 0.000000e+00 0.006618897
## [3,] 0.000000e+00 0.035399709
## [4,] 1.082746e-04 0.000000000
## [5,] 6.361807e-05 0.000000000
## [6,] 1.000000e+00 0.009219359
## [7,] 4.096870e-02 1.000000000
##
## $spillover
## NULL
##
## $`$SPILLOVER`
## NULL

comp <- comp_list[[1]]
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Given a flowFrame, spillover will check a few valid spillover matrix keywords. This will result
in a list, usually only one of which will be valid (in this case, the first one, corresponding to the $SPILL
keyword).

This spillover matrix can then be applied to the channels of the flowFrame using the compensate
function.

x_comp <- compensate(x, comp)

The compensate function can also take a flowSet as its first argument and a list of named spillover
matrices to compensate the corresponding flowFrames. Here the simplify = FALSE option is
necessary so that fsApply returns a list of named matrices.

comp <- fsApply(fs, function(x) spillover(x)[[1]], simplify=FALSE)
fs_comp <- compensate(fs, comp)

While transformation will be discussed in the next section, it is helpful to visualize the effect of
compensation on transformed parameters. Quick inspection of the compensation matrix above reveals
large overlap between the 450nm and 545nm channels, so we would expect to see a significant differ-
ence in each of those channels after compensation. This is in fact the case:

library(gridExtra)
transList <- estimateLogicle(x, c("V450-A","V545-A"))
p1 <- autoplot(transform(x, transList), "V450-A", "V545-A") +

ggtitle("Before")
p2 <- autoplot(transform(x_comp, transList), "V450-A", "V545-A") +

ggtitle("Before")
grid.arrange(as.ggplot(p1), as.ggplot(p2), ncol = 2)
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Often the spillover matrix is not provided in the FCS file for each analyzed sample and instead it is
necessary to work with a set of FCS files representing the controls from which the spillover matrix is
to be calculated, as follows.
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5.2 Computing a spillover matrix from a set of compensation controls

The spillover matrix can also be calculated using a set of FCS files that contain data for an unstained
sample and singly-stained samples for each of the measurement channels. If these files are not already
incorporated as flowFrames in a flowSet object, this must be done first. Here we also are assigning the
appropriate channel name for each control file before coercion of the frames to a flowSet. This spillover
calculation method is now part of the flowStats package.

library(flowStats)
fcs.dir <- system.file("extdata", "compdata", "data",

package="flowCore")
frames <- lapply(dir(fcs.dir, full.names=TRUE), read.FCS)
names(frames) <- c("UNSTAINED", "FL1-H", "FL2-H", "FL4-H", "FL3-H")
frames <- as(frames, "flowSet")
comp <- spillover(frames, unstained="UNSTAINED", patt = "-H",

fsc = "FSC-H", ssc = "SSC-H",
stain_match = "ordered")

comp

## FL1-H FL2-H FL3-H FL4-H
## FL1-H 1.0000000000 0.2420222776 0.032083706 0.001127816
## FL2-H 0.0077220477 1.0000000000 0.140788232 0.002632689
## FL3-H 0.0007590319 0.0009620459 0.003218614 1.000000000
## FL4-H 0.0150806322 0.1755899032 1.000000000 0.229593860

Note that when using the stain match = "ordered" option of spillover, we are spec-
ifying that the method should assume the singly-stained flowFrames in the flowSet are in the order of
the channel columns. In this case this behavior is incorrect as can be seen by quick inspection of the re-
sulting matrix. To override this behavior and use the names we have provided, use the stain match
= "regexpr" option instead. This will use regular expression matching of the channel names to the
flowFrame names to achieve the proper ordering.

sampleNames(frames)

## [1] "UNSTAINED" "FL1-H" "FL2-H" "FL4-H" "FL3-H"

comp <- spillover(frames, unstained="UNSTAINED", patt = "-H",
fsc = "FSC-H", ssc = "SSC-H",
stain_match = "regexpr")

comp

## FL1-H FL2-H FL3-H FL4-H
## FL1-H 1.0000000000 0.2420222776 0.032083706 0.001127816
## FL2-H 0.0077220477 1.0000000000 0.140788232 0.002632689
## FL3-H 0.0150806322 0.1755899032 1.000000000 0.229593860
## FL4-H 0.0007590319 0.0009620459 0.003218614 1.000000000
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As an alternative way to match channels to their corresponding compensation controls, we provide
the spillover match method. This allows for the matching of control files to specific channels
via a simple csv file, resulting in a flowSet ready for spillover. Lastly, it is acceptable to omit the
flowSet argument x to both spillover and spillover match if you provide the path argument
to point to a directory containing the files to be used in the compensation flowSet:

comp_match <- system.file("extdata", "compdata", "comp_match",
package="flowCore")

# The matchfile has a simple format
writeLines(readLines(comp_match))

## filename,channel
## 060909.001,unstained
## 060909.002,FL1-H
## 060909.004,FL4-H
## 060909.005,FL3-H
## 060909.003,FL2-H

control_path <- system.file("extdata", "compdata", "data",
package="flowCore")

# Using path rather than pre-constructed flowSet
matched_fs <- spillover_match(path=control_path,

fsc = "FSC-H", ssc = "SSC-H",
matchfile = comp_match)

comp <- spillover(matched_fs, fsc = "FSC-H", ssc = "SSC-H",
prematched = TRUE)

This spillover matrix can then be used to compensate a sample flowFrame or an entire flowSet.

6 Transformation

flowCore features two methods of transforming parameters within a flowFrame or flowSet: inline and
out-of-line. The inline method, discussed in the next section, has been developed primarily to support
filtering features and is strictly more limited than the out-of-line transformation method, which uses
R’s transform function to accomplish the filtering. Like the normal transform function, the
flowFrame is considered to be a data frame with columns named for parameters of the FCS file. For
example, if we wished to plot our first flowFrame’s first two fluorescence parameters on the log scale
we might write:

fs <- read.flowSet(path=system.file("extdata", "compdata", "data",
package="flowCore"), name.keyword="SAMPLE ID")

autoplot(transform(fs[[1]],
`FL1-H`=log(`FL1-H`),
`FL2-H`=log(`FL2-H`)
),
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Like the usual transform function, we can also create new parameters based on the old param-
eters, without destroying the old

autoplot(transform(fs[[1]],
log.FL1.H=log(`FL1-H`),
log.FL2.H=log(`FL2-H`)
),

"log.FL1.H", "log.FL2.H")
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6.1 Standard Transforms

Though any function can be used as a transform in both the out-of-line and inline transformation tech-
niques, flowCore provides a number of parameterized transform generators that correspond to the
transforms commonly found in flow cytometry and defined in the Transformation Markup Language
(Transformation-ML, see http://www.ficcs.org/ and Spidlen et al. (2006) for more details).
Briefly, the predefined transforms are:

truncateTransform y =

{
a x < a
x x ≥ a

scaleTransform f(x) = x−a
b−a

linearTransform f(x) = a+ bx

quadraticTransform f(x) = ax2 + bx+ c

lnTransform f(x) = log (x) r
d

logTransform f(x) = logb (x)
r
d

biexponentialTransform f−1(x) = aebx − cedx + f

logicleTransform A special form of the biexponential transform with parameters selected by the data.

arcsinhTransform f(x) = asinh (a+ bx) + c

To use a standard transform, first we create a transform function via the constructors supplied by
flowCore:

aTrans <- truncateTransform("truncate at 1", a=1)
aTrans

## transform object 'truncate at 1'

which we can then use on the parameter of interest in the usual way, in this case for the full flowSet
using the same syntax

transform(fs,`FL1-H`=aTrans(`FL1-H`))

## A flowSet with 5 experiments.
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

However this form of transform call is not intended to be used in the programmatic context because
a locally defined transform function (e.g. ’aTrans’) may not always be visible to the non-standard
evaluation environment. .e.g
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f1 <- function(fs,...){
transform(fs, ...)[,'FL1-H']

}

f2 <- function(fs){
aTrans <- truncateTransform("truncate at 1", a=1)
f1(fs, `FL1-H` = aTrans(`FL1-H`))

}
res <- try(f2(fs), silent = TRUE)
res

## A flowSet with 5 experiments.
##
## column names:
## FL1-H

So this form of usage of ’transform’ method is only useful for the interactive exploratory. we highly
recommend the usage of transformList instead for more robust and reproducible code.

myTrans <- transformList('FL1-H', aTrans)
transform(fs, myTrans)

## A flowSet with 5 experiments.
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

7 Gating

The most common task in the analysis of flow cytometry data is some form of filtering operation, also
known as gating, either to obtain summary statistics about the number of events that meet certain criteria
or to perform further analysis on a subset of the data. Most filtering operations are a composition of one
or more common filtering operations. The definition of gates in flowCore follows the Gating Markup
Language Candidate Recommendation Spidlen et al. (2008), thus any flowCore gating strategy can be
reproduced by any other software that also adheres to the standard and vice versa.

7.1 Standard gates and filters

Like transformations, flowCore includes a number of built-in common flow cytometry gates. The
simplest of these gates are the geometric gates, which correspond to those typically found in interactive
flow cytometry software:

rectangleGate Describes a cubic shape in one or more dimensions–a rectangle in one dimension is
simply an interval gate.
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polygonGate Describes an arbitrary two dimensional polygonal gate.

polytopeGate Describes a region that is the convex hull of the given points. This gate can exist in
dimensions higher than 2, unlike the polygonGate.

ellipsoidGate Describes an ellipsoidal region in two or more dimensions

These gates are all described in more or less the same manner (see man pages for more details):

rectGate <- rectangleGate(filterId="Fluorescence Region",
"FL1-H"=c(0, 12), "FL2-H"=c(0, 12))

In addition, we introduce the notion of data-driven gates, or filters, not usually found in flow cy-
tometry software. In these approaches, the necessary parameters are computed based on the properties
of the underlying data, for instance by modeling data distribution or by density estimation:

norm2Filter A robust method for finding a region that most resembles a bivariate Normal distribution.
Note that this method now resides in the flowStats package

kmeansFilter Identifies populations based on a one dimensional k-means clustering operation. Allows
the specification of multiple populations.

7.2 Count Statistics

When we have constructed a filter, we can apply it in two basic ways. The first is to collect simple
summary statistics on the number and proportion of events considered to be contained within the gate
or filter. This is done using the filter method. The first step is to apply our filter to some data

result = filter(fs[[1]],rectGate)
result

## A filterResult produced by the filter named 'Fluorescence Region'

As we can see, we have returned a filterResult object, which is in turn a filter allowing for reuse in,
for example, subsetting operations. To obtain count and proportion statistics, we take the summary of
this filterResult, which returns a list of summary values:

summary(result)

## Fluorescence Region+: 9811 of 10000 events (98.11%)

summary(result)$n

## [1] 10000

summary(result)$true

## [1] 9811

summary(result)$p

## [1] 0.9811
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A filter which contains multiple populations, such as the kmeansFilter, can return a list of summary
lists:

summary(filter(fs[[1]],
kmeansFilter("FSC-H"=c("Low", "Medium", "High"),

filterId="myKMeans")))

## Low: 2518 of 10000 events (25.18%)
## Medium: 5109 of 10000 events (51.09%)
## High: 2373 of 10000 events (23.73%)

A filter may also be applied to an entire flowSet, in which case it returns a list of filterResult objects:

filter(fs,rectGate)

## A list of filterResults for a flowSet containing 5 frames
## produced by the filter named 'Fluorescence Region'

7.3 Subsetting

To subset or split a flowFrame or flowSet, we use the Subset and split methods respectively. The
first, Subset, behaves similarly to the standard R subset function, which unfortunately could not
be used. For example, the morphology parameters, Forward Scatter and Side Scatter, contain a large
more-or-less ellipse shaped population:

autoplot(fs[[1]], "FSC-H", "SSC-H")

060909.001

200 400 600

0

250

500

750

1000

FSC−H FSC−Height

SS
C−

H S
SC

−H
eig

ht

If we wished to deal only with that population, we might use Subset along with a norm2Filter
object as follows:
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library(flowStats)
morphGate <- norm2Filter("FSC-H", "SSC-H", filterId="MorphologyGate",

scale=2)
smaller <- Subset(fs, morphGate)
fs[[1]]

## flowFrame object '060909.001'
## with 10000 cells and 7 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-Height 1024 0 1023
## $P2 SSC-H SSC-Height 1024 0 1023
## $P3 FL1-H <NA> 1024 1 10000
## $P4 FL2-H <NA> 1024 1 10000
## $P5 FL3-H <NA> 1024 1 10000
## $P6 FL1-A <NA> 1024 0 1023
## $P7 FL4-H <NA> 1024 1 10000
## 141 keywords are stored in the 'description' slot

smaller[[1]]

## flowFrame object '060909.001'
## with 8312 cells and 7 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-Height 1024 0 1023
## $P2 SSC-H SSC-Height 1024 0 1023
## $P3 FL1-H <NA> 1024 1 10000
## $P4 FL2-H <NA> 1024 1 10000
## $P5 FL3-H <NA> 1024 1 10000
## $P6 FL1-A <NA> 1024 0 1023
## $P7 FL4-H <NA> 1024 1 10000
## 141 keywords are stored in the 'description' slot

Notice how the smaller flowFrame objects contain fewer events. Now imagine we wanted to use
a kmeansFilter as before to split our first fluorescence parameter into three populations. To do this we
employ the split function:

split(smaller[[1]], kmeansFilter("FSC-H"=c("Low","Medium","High"),
filterId="myKMeans"))

## $Low
## flowFrame object '060909.001 (Low)'
## with 2422 cells and 7 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-Height 1024 0 1023
## $P2 SSC-H SSC-Height 1024 0 1023
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## $P3 FL1-H <NA> 1024 1 10000
## $P4 FL2-H <NA> 1024 1 10000
## $P5 FL3-H <NA> 1024 1 10000
## $P6 FL1-A <NA> 1024 0 1023
## $P7 FL4-H <NA> 1024 1 10000
## 141 keywords are stored in the 'description' slot
##
## $Medium
## flowFrame object '060909.001 (Medium)'
## with 3563 cells and 7 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-Height 1024 0 1023
## $P2 SSC-H SSC-Height 1024 0 1023
## $P3 FL1-H <NA> 1024 1 10000
## $P4 FL2-H <NA> 1024 1 10000
## $P5 FL3-H <NA> 1024 1 10000
## $P6 FL1-A <NA> 1024 0 1023
## $P7 FL4-H <NA> 1024 1 10000
## 141 keywords are stored in the 'description' slot
##
## $High
## flowFrame object '060909.001 (High)'
## with 2327 cells and 7 observables:
## name desc range minRange maxRange
## $P1 FSC-H FSC-Height 1024 0 1023
## $P2 SSC-H SSC-Height 1024 0 1023
## $P3 FL1-H <NA> 1024 1 10000
## $P4 FL2-H <NA> 1024 1 10000
## $P5 FL3-H <NA> 1024 1 10000
## $P6 FL1-A <NA> 1024 0 1023
## $P7 FL4-H <NA> 1024 1 10000
## 141 keywords are stored in the 'description' slot

or for an entire flowSet

split(smaller, kmeansFilter("FSC-H"=c("Low", "Medium", "High"),
filterId="myKMeans"))

## $Low
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: 060909.001 060909.002 ... 060909.005 (5 total)
## varLabels: name population
## varMetadata: labelDescription
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##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
##
## $Medium
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: 060909.001 060909.002 ... 060909.005 (5 total)
## varLabels: name population
## varMetadata: labelDescription
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H
##
## $High
## A flowSet with 5 experiments.
##
## An object of class 'AnnotatedDataFrame'
## rowNames: 060909.001 060909.002 ... 060909.005 (5 total)
## varLabels: name population
## varMetadata: labelDescription
##
## column names:
## FSC-H SSC-H FL1-H FL2-H FL3-H FL1-A FL4-H

7.4 Combining Filters

Of course, most filtering operations consist of more than one gate. To combine gates and filters we
use the standard R Boolean operators: &, — and ! to construct an intersection, union and complement
respectively:

rectGate & morphGate

## filter 'Fluorescence Region and MorphologyGate'
## the intersection between the 2 filters
##
## Rectangular gate 'Fluorescence Region' with dimensions:
## FL1-H: (0,12)
## FL2-H: (0,12)
##
## norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
## method: covMcd
## scale.factor: 2
## n: 50000
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rectGate | morphGate

## filter 'Fluorescence Region or MorphologyGate'
## the union of the 2 filters
##
## Rectangular gate 'Fluorescence Region' with dimensions:
## FL1-H: (0,12)
## FL2-H: (0,12)
##
## norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
## method: covMcd
## scale.factor: 2
## n: 50000

!morphGate

## filter 'not MorphologyGate', the complement of
## norm2Filter 'MorphologyGate' in dimensions FSC-H and SSC-H with parameters:
## method: covMcd
## scale.factor: 2
## n: 50000

We also introduce the notion of the subset operation, denoted by either %subset% or %&%. This
combination of two gates first performs a subsetting operation on the input flowFrame using the right-
hand filter and then applies the left-hand filter. For example,

summary(filter(smaller[[1]],rectGate %&% morphGate))

## Fluorescence Region in MorphologyGate+: 7194 of 8312 events (86.55%)

first calculates a subset based on the morphGate filter and then applies the rectGate.

7.5 Transformation Filters

Finally, it is sometimes desirable to construct a filter with respect to transformed parameters. To al-
low for this in our filtering constructs we introduce a special form of the transform method along
with another filter combination operator %on%, which can be applied to both filters and flowFrame or
flowSet objects. To specify our transform filter we must first construct a transform list using a simplified
version of the transform function:

tFilter <- transform("FL1-H"=log,"FL2-H"=log)
tFilter

## An object of class "transformList"
## Slot "transforms":
## [[1]]

24



## transformMap for parameter 'FL1-H' mapping to 'FL1-H'
##
## [[2]]
## transformMap for parameter 'FL2-H' mapping to 'FL2-H'
##
##
## Slot "transformationId":
## [1] "defaultTransformation"

Note that this version of the transform filter does not take parameters on the right-hand side–the
functions can only take a single vector that is specified by the parameter on the left-hand side. In this
case those parameters are “FL1-H” and “FL2-H.” The function also does not take a specific flowFrame
or flowSet allowing us to use this with any appropriate data. We can then construct a filter with respect
to the transform as follows:

rect2 <- rectangleGate(filterId="Another Rect", "FL1-H"=c(1,2),
"FL2-H"=c(2,3)) %on% tFilter
rect2

## transformed filter 'Another Rect on transformed values of FL1-H,FL2-H'

Additionally, we can use this construct directly on a flowFrame or flowSet by moving the transform
to the left-hand side and placing the data on the right-hand side:

autoplot(tFilter %on% smaller[[1]], "FL1-H","FL2-H")

060909.001

0 1 2 3
0

1

2

3

FL1−H

FL
2−H

which has the same effect as the log transform used earlier.
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8 Extensions from flowWorkspace: GatingHierarchy and GatingSet

The now-defunct filterSet class was very limited in its use for complex analysis work flows. It was
result-centric and it was hard to access intermediate results. flowWorkspace and the openCyto frame-
work (http://opencyto.org) offer much more versatile tools for such tasks through the GatingSet class.
The general idea is to let the software handle the organization of intermediate results and operations
and to provide a unified API to access and summarize these operations.

8.1 Abstraction of GatingSet

There are two classes in flowWorkspace that are used to abstract work flows: GatingSet objects are
the basic container holding all the necessary bits and pieces and they are the main structure for user
interaction. It is the container storing multiple GatingHierarchy objects which are associated with
individual samples. One can think of GatingSet as corresponding to (flowSet) and GatingHierarchy as
corresponding to (flowFrame).

It is important to know that GatingSet objects use an external pointer to store the gating tree and
thus most of its accessors have a reference semantic instead of the pass-by-value semantic that is usually
found in the R language. The main consequence on the user-level is the fact that direct assignments
to a GatingSet object are usually not necessary; i.e., functions that operate on the GatingSet have the
potential side-effect of modifying the object.

8.2 Creating GatingSet objects

Before creating a GatingSet, we need to have flow data loaded into R as a flowSet or ncdfFlowSet (the
disk-based version of flowSet, to handle large data sets that are too big for memory; see ncdfFlow
package).

library(flowWorkspace)
fcsfiles <- list.files(pattern = "CytoTrol",

system.file("extdata",
package = "flowWorkspaceData"),

full = TRUE)
fs <- read.flowSet(fcsfiles)

Then a GatingSet can be created using the constructor GatingSet.

gs <- GatingSet(fs)
gs

## A GatingSet with 2 samples

Normally, we want to compensate the data first by using a user-supplied compensation matrix:

comp

## Compensation object 'defaultCompensation':
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## B710-A G560-A G780-A R660-A R780-A V450-A V545-A
## B710-A 1.000000 0.0009476 0.071170002 0.0362400 0.1800000 0.007104 0.007608
## G560-A 0.115400 1.0000000 0.009097001 0.0018360 0.0000000 0.000000 0.000000
## G780-A 0.014280 0.0380000 1.000000000 0.0006481 0.1500000 0.000000 0.000000
## R660-A 0.005621 0.0000000 0.006604000 1.0000000 0.1786000 0.000000 0.000000
## R780-A 0.000000 0.0000000 0.035340000 0.0102100 1.0000000 0.000000 0.000000
## V450-A 0.000000 0.0000000 -0.059999999 -0.0400000 0.0000000 1.000000 0.410000
## V545-A 0.002749 0.0000000 0.000000000 0.0000000 0.0006963 0.035000 1.000000

gs <- compensate(gs, comp)
fs_comp <- getData(gs)

We can query the available nodes in the GatingSet using the gs get pop paths method:

gs_get_pop_paths(gs)

## [1] "root"

It shows the only node “root” which corresponds to the raw flow data just added.

8.3 transform the data

Transformation can be either done on a flowSet before using it to construct a GatingSet or a trans-
formerList can be directly added to a GatingSet:

biexpTrans <- flowJo_biexp_trans(channelRange=4096, maxValue=262144
, pos=4.5,neg=0, widthBasis=-10)

chnls <- parameters(comp)
tf <- transformerList(chnls, biexpTrans)

# or use estimateLogicle directly on GatingHierarchy
# object to generate transformerList automatically:
# tf <- estimateLogicle(gs[[1]], chnls)

gs <- transform(gs, tf)

p1 <- autoplot(fs_comp[[1]], "B710-A") + ggtitle("raw")
p2 <- autoplot(gs_cyto_data(gs)[[1]], "B710-A") +

ggtitle("trans") +
ggcyto_par_set(limits = "instrument")

## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.

grid.arrange(as.ggplot(p1), as.ggplot(p2), ncol = 2)
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Note that we did assign the return value of transform back to gs. This is because the flow data
is stored as an R object and thus transforming the data still follows the pass-by-value semantics.

8.4 Add the gates

Some basic flowCore filters can be added to a GatingSet:

rg1 <- rectangleGate("FSC-A"=c(50000, Inf), filterId="NonDebris")
gs_pop_add(gs, rg1, parent = "root")

## [1] 2

gs_get_pop_paths(gs)

## [1] "root" "/NonDebris"

# gate the data
recompute(gs)

## done!

As we see, here we don’t need to assign GatingSet back because all the modifications are made in
place to the external pointer rather than the R object itself. And now there is one new population node
under the “root” node called “NonDebris”. The node is named after the filterId of the gate if not
explictly supplied. After the gates are added, the actual gating process is done by explictly calling the
recompute method. Note that the numeric value it returns is the internal ID for the new population
just added, which can normally be ignored since the gating path is the recommended way to refer to
population nodes later.

To view the gate we just added,
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autoplot(gs, "NonDebris")

## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
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Since They are 1-D gates, we can also display them in density plots

ggcyto(gs, aes(x = `FSC-A`)) + geom_density() + geom_gate("NonDebris")
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To get population statistics for the given populatuion
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gh_pop_get_stats(gs[[1]], "NonDebris")#counts

## pop count
## 1: NonDebris 94764

gh_pop_get_stats(gs[[1]], "NonDebris", type = "percent")#proportion

## pop percent
## 1: NonDebris 0.7927985

Now we add two more gates:

# add the second gate
mat <- matrix(c(54272,59392,259071.99382782

,255999.994277954,62464,43008,70656
,234495.997428894,169983.997344971,34816)

, nrow = 5)
colnames(mat) <-c("FSC-A", "FSC-H")
mat

## FSC-A FSC-H
## [1,] 54272 43008
## [2,] 59392 70656
## [3,] 259072 234496
## [4,] 256000 169984
## [5,] 62464 34816

pg <- polygonGate(mat)
gs_pop_add(gs, pg, parent = "NonDebris", name = "singlets")

## [1] 3

# add the third gate
rg2 <- rectangleGate("V450-A"=c(2000, Inf))
gs_pop_add(gs, rg2, parent = "singlets", name = "CD3")

## [1] 4

gs_get_pop_paths(gs)

## [1] "root" "/NonDebris"
## [3] "/NonDebris/singlets" "/NonDebris/singlets/CD3"

We see two more nodes are added to ’GatingSet’ and the population names are explicitly specified
during the addition this time.

A quadrantGate, which results in four sub-populations, is also supported.
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qg <- quadGate("B710-A" = 2000, "R780-A" = 3000)
gs_pop_add(gs, qg, parent="CD3", names = c("CD8", "DPT", "CD4", "DNT"))

## [1] 5 6 7 8

gs_pop_get_children(gs[[1]], "CD3")

## [1] "/NonDebris/singlets/CD3/CD8" "/NonDebris/singlets/CD3/DPT"
## [3] "/NonDebris/singlets/CD3/CD4" "/NonDebris/singlets/CD3/DNT"

# gate the data from "singlets"
recompute(gs, "singlets")

## done!

Here we see four child nodes are added to the “CD3” parent node. Four quadrants are named ex-
plicitly through the names argument by clock-wise order (start from top-left quadrant). Recomputing
only needs to be done once from the first ungated node, which will automatically compute all of its
descendants.

To plot the underlying tree:

plot(gs)

## Loading required package: Rgraphviz
## Loading required package: graph
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: ’BiocGenerics’
## The following objects are masked from ’package:parallel’:
##
## clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
## clusterExport, clusterMap, parApply, parCapply, parLapply,
## parLapplyLB, parRapply, parSapply, parSapplyLB
## The following object is masked from ’package:flowStats’:
##
## normalize
## The following object is masked from ’package:gridExtra’:
##
## combine
## The following object is masked from ’package:flowCore’:
##
## normalize
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## The following objects are masked from ’package:stats’:
##
## IQR, mad, sd, var, xtabs
## The following objects are masked from ’package:base’:
##
## Filter, Find, Map, Position, Reduce, anyDuplicated, append,
## as.data.frame, basename, cbind, colnames, dirname, do.call,
## duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
## lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
## pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
## tapply, union, unique, unsplit, which, which.max, which.min
## Loading required package: grid

root NonDebris singlets CD3

CD8

DPT

CD4

DNT

To plot all gates for one sample:

autoplot(gs[[1]])

## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
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To retreive the underlying flow data for a gated population:

fs_nonDebris <- getData(gs, "NonDebris")
fs_nonDebris

## A cytoset with 2 samples.
##
## column names:
## FSC-A, FSC-H, FSC-W, SSC-A, B710-A, R660-A, R780-A, V450-A, V545-A, G560-A, G780-A, Time

nrow(fs_nonDebris[[1]])

## [1] 94764

nrow(fs[[1]])

## [1] 119531

To get all the population statistics:

gs_pop_get_count_fast(gs)

## name Population Parent
## 1: CytoTrol_CytoTrol_1.fcs /NonDebris root
## 2: CytoTrol_CytoTrol_1.fcs /NonDebris/singlets /NonDebris
## 3: CytoTrol_CytoTrol_1.fcs /NonDebris/singlets/CD3 /NonDebris/singlets
## 4: CytoTrol_CytoTrol_1.fcs /NonDebris/singlets/CD3/CD8 /NonDebris/singlets/CD3
## 5: CytoTrol_CytoTrol_1.fcs /NonDebris/singlets/CD3/DPT /NonDebris/singlets/CD3
## 6: CytoTrol_CytoTrol_1.fcs /NonDebris/singlets/CD3/CD4 /NonDebris/singlets/CD3
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## 7: CytoTrol_CytoTrol_1.fcs /NonDebris/singlets/CD3/DNT /NonDebris/singlets/CD3
## 8: CytoTrol_CytoTrol_2.fcs /NonDebris root
## 9: CytoTrol_CytoTrol_2.fcs /NonDebris/singlets /NonDebris
## 10: CytoTrol_CytoTrol_2.fcs /NonDebris/singlets/CD3 /NonDebris/singlets
## 11: CytoTrol_CytoTrol_2.fcs /NonDebris/singlets/CD3/CD8 /NonDebris/singlets/CD3
## 12: CytoTrol_CytoTrol_2.fcs /NonDebris/singlets/CD3/DPT /NonDebris/singlets/CD3
## 13: CytoTrol_CytoTrol_2.fcs /NonDebris/singlets/CD3/CD4 /NonDebris/singlets/CD3
## 14: CytoTrol_CytoTrol_2.fcs /NonDebris/singlets/CD3/DNT /NonDebris/singlets/CD3
## Count ParentCount
## 1: 94764 119531
## 2: 88586 94764
## 3: 59911 88586
## 4: 16515 59911
## 5: 2070 59911
## 6: 38506 59911
## 7: 2820 59911
## 8: 94290 115728
## 9: 88334 94290
## 10: 59845 88334
## 11: 16774 59845
## 12: 2200 59845
## 13: 38127 59845
## 14: 2744 59845

8.5 Removing nodes from a GatingSet object

There are dependencies between nodes in the hierarchical structure of a GatingSet object. Thus, re-
moving a particular node means also removing all of its associated child nodes.

Rm('CD3', gs)
gs_get_pop_paths(gs)

## [1] "root" "/NonDebris" "/NonDebris/singlets"

Rm('NonDebris', gs)
gs_get_pop_paths(gs)

## [1] "root"

Now for the larger data set, it would be either inaccurate to apply the same hard-coded gate to all
samples or impractical to manually set the gate coordinates for each individual sample. openCyto((G.
et al., 2014)) provides some data-driven gating functions to automatically generate these gates.

For example, mindensity can be used for estimating a “nonDebris” gate for each sample.
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if(require(openCyto)){
thisData <- getData(gs)
nonDebris_gate <- fsApply(thisData,

function(fr)
openCyto:::.mindensity(fr, channels = "FSC-A"))

gs_pop_add(gs, nonDebris_gate, parent = "root", name = "nonDebris")
recompute(gs)
}

## Loading required package: openCyto
## done!

singletGate can be used for estimating “singlets”

if(require(openCyto)){
thisData <- getData(gs, "nonDebris") #get parent data
singlet_gate <- fsApply(thisData,

function(fr)
openCyto:::.singletGate(fr, channels =c("FSC-A", "FSC-H")))

gs_pop_add(gs, singlet_gate, parent = "nonDebris", name = "singlets")
recompute(gs)
}

## done!

and then mindensity can be used again for the ”CD3” gate

if(require(openCyto)){
thisData <- getData(gs, "singlets") #get parent data
CD3_gate <- fsApply(thisData,

function(fr)
openCyto:::.mindensity(fr, channels ="V450-A"))

gs_pop_add(gs, CD3_gate, parent = "singlets", name = "CD3")
recompute(gs)
}

## done!

and then we can use the more adanced version of quadrantGate: quadGate.seq for gating
”CD4” and ”CD8” sequentially:

if(require(openCyto)){
thisData <- getData(gs, "CD3") #get parent data
Tsub_gate <- fsApply(thisData,

function(fr)
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openCyto::quadGate.seq(fr,
channels = c("B710-A", "R780-A"),
gFunc = 'mindensity')

)
gs_pop_add(gs, Tsub_gate, parent = "CD3", names = c("CD8", "DPT", "CD4", "DNT"))
recompute(gs)
}

## done!

and then plot the gates

autoplot(gs[[1]])

## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
## Coordinate system already present. Adding new coordinate system, which
will replace the existing one.
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Note that in order to get parent gated data by getData, we have to call recompute after adding
each gate. The result is very similar to the manual gates but the gating process is more data-driven and
more consistent across samples.

To further automate the process, a gating pipeline can be established through OpenCyto((G. et al.,
2014)) that defines the hierarchical gating template in a text-based csv file. (See more details from
http://openCyto.org)
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