ORFik 1.8.6
Welcome to the ORFik
package.
ORFik
is an R package for analysis of transcript and translation features through manipulation of sequence data and NGS data.
This vignette will walk you through how to how to download annotation and align data with ORFik.
Here we will show a full example of aligning RNA-seq from yeast using the SacCer3 genome.
To download annotation we use the getGenomeAndAnnotation function. We need to decide 3 things:
library(ORFik) # This package
annotation <- getGenomeAndAnnotation(
organism = "saccharomyces_cerevisiae",
output.dir = "~/Bio_data/annotations/Yeast_SacCer3/",
assembly_type = "toplevel"
)
The function will also create a gtf.db object so speed up loading of annotation, and index your genome to a .fai file.
If you run this function again after you have run this function and downloaded the data once, it will not re-download, but just output the correct object, this makes it easy to rerun the script, when you have some steps already finished.
If you you want to remove contaminants: phix, non coding RNAs, ribosomalRNAs, or tRNAs, also specify these in the function. The function can only download phix and noncoding RNAs for you, so rRNAs you must manually download and add from Silva database, and tRNAs from tRNA scan or similar databases.
ORFik uses the STAR aligner, which is splice aware and fast. This will only work on unix systems (Linux or Mac) for now. To align the data we need two steps, the indexing of the genome step and the alignment to the genome step.
To index the genome just give it the annotation output from previous step. This will also make an index for each of the depletion steps like phix, if you specified them in the earlier step.
index <- STAR.index(annotation, wait = FALSE)
If you run this function again after index exists in current file location, it will not re-index, but just output the correct object. Do remake = TRUE if you want to re-index.
First we need some data to align, I here just show what would work for the paired end RNA-seq experiment SRR453566.
Here you will use your own data. If you want to follow the same example you can in terminal do for unix:
mkdir -p ~/Bio_data/raw_data/RNA-seq/Yeast_SRR453566/
cd ~/Bio_data/raw_data/RNA-seq/Yeast_SRR453566/
# Install fastq-dump (https://ncbi.github.io/sra-tools/install_config.html)
fastq-dump --split-files --gzip --skip-technical --readids --read-filter pass --clip SRR453566
ORFik uses the fastp for trimming reads, this also only works on unix (Linux or Mac OS).
Now let’s see what we need as inputs for the alignment pipeline: We need usually 9 arguments (more are possible if you need them):
input.dir.rna <- "~/Bio_data/raw_data/RNA-seq/Yeast_SRR453566/"
output.dir.rna <- "~/Bio_data/processed_data/RNAseq/Yeast_SRR453566/aligned_sacCer3/"
alignment <-
STAR.align.folder(input.dir.rna, output.dir.rna, index,
paired.end = "yes",
steps = "tr-ge", # (trim needed: adapters found, then genome)
adapter.sequence = "auto",
max.cpus = 30, trim.front = 3, min.length = 20)
If you used the fastp (tr step), you will get a pre-alignment QC report. Just like FastQC.
To get some plots and a statistics table of STAR runs, do:
STAR.multiQC(alignment)
To simplify coding and sharing of your work, you should make a ORFik experiment, check out the ORFik experiment vignette if you are unfamiliar with this class. You should first rename the bam files to more meaningful names, like RNA_WT_1 etc. Remember to keep a table of which SRA numbers correspond to which new file name. You do not need to do this, but this will make the ORFik experiment able to guess correctly what the data is. If there are replicates etc.
We can now easily make an ORFik experiment from the data we have:
txdb_file <- paste0(annotation["gtf"], ".db") # Get txdb file, not raw gtf
fa <- annotation["genome"]
create.experiment(exper = "yeast_exp_RNA",
dir = paste0(output.dir.rna, "/aligned/"),
txdb = txdb_file, fa = fa,
organism = "Saccharomyces cerevisiae",
viewTemplate = FALSE,
pairedEndBam = c(T) # True/False per bam file
)
The files is now saved to default directory which is: saveDir = “~/Bio_data/ORFik_experiments/”
df <- read.experiment("yeast_exp_RNA")
)
If you are not happy with the libtype, stage, replicates and so on for the file, you can edit the ORFik experiment in Libre Office, Excel or another spreadsheet viewer.
Now you have an experiment, but bam files are big and slow to load. Let’s convert to some faster formats.
If you want optimzed format identical to bam file, use .ofst. (Fastest, not readable in IGV)
remove.experiments(df)
convertLibs(df, type = "ofst")
If you want peaks only, use wig files (Fast, readable in IGV)
remove.experiments(df)
convertLibs(df, type = "wig")
As an example of how to load the data to R in the optimized format .ofst.
This will output the libraries to the environment specified, default .GlobalEnv (the default R environment). The files are named from the experiment table RNA_1_WT, RNA_1_treated etc.
remove.experiments(df)
outputLibs(df, type = "ofst")
If I rather want the wig format files:
remove.experiments(df)
outputLibs(df, type = "wig")
See ?QCreport for details of what you will get as output
QCreport(df)
After you have run QCreport you will have count tables of peaks over the mrna’s, 5’ UTRs, CDS and 3’ UTRs.
Let’s do an example to find the ratio between fpkm of between the CDS and mRNAs transcript regions.
mrna <- countTable(df, region = "mrna", type = "fpkm")
cds <- countTable(df, region = "cds", type = "fpkm")
ratio <- cds / mrna
We now have a ratio of fpkm values between CDS and mrna.