Package 'netReg'

February 9, 2020
Type Package
Title Network-Regularized Regression Models
Version 1.11.0
Date 2018-04-28
Maintainer Simon Dirmeier simon.dirmeier@web.de
Description netReg fits linear regression models using network-penalization. Graph prior knowledge, in the form of biological networks, is being incorporated into the loss function of the linear model.
The networks describe
biological relationships such as co-regulation or dependency of the same transcription factors/metabolites/etc. yielding a part sparse and part smooth solution for coefficient profiles.

URL https://github.com/dirmeier/netReg
BugReports https://github.com/dirmeier/netReg/issues
Depends R(>=3.4)
biocViews Software, StatisticalMethod, Regression, FeatureExtraction, Network, GraphAndNetwork

License GPL-3 I BSL-1.0 + file LICENSE
Encoding UTF-8
Suggests testhat, knitr, rmarkdown, BiocStyle, lintr, lassoshooting
VignetteBuilder knitr
RoxygenNote 6.0.1
SystemRequirements $\mathrm{C}++11$
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp, stats
NeedsCompilation yes
git_url https://git.bioconductor.org/packages/netReg
git_branch master
git_last_commit a30652f
git_last_commit_date 2019-10-29
Date/Publication 2020-02-08
Author Simon Dirmeier [aut, cre]

R topics documented:

netReg-package 2
cv.edgenet 3
edgenet 4
predict.gaussian.edgenet 6
yeast 7
Index 8

```
netReg-package netReg
```


Description

netReg is a package for generalized linear regression that includes prior graphs in the models objective function.

Details

netReg uses Armadillo, OpenBLAS, BLAS and LAPACK for fast matrix computations and Dlib for constrained derivate-free optimization.

Author(s)

Simon Dirmeier I simon.dirmeier@gmx.de

References

Dirmeier, Simon and Fuchs, Christiane and Mueller, Nikola S and Theis, Fabian J (2018), netReg: Network-regularized linear models for biological association studies.
Bioinformatics
Friedman J., Hastie T., Hoefling H. and Tibshirani R. (2007), Pathwise coordinate optimization. The Annals of Applied Statistics

Friedman J., Hastie T. and Tibshirani R. (2010), Regularization Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software

Fu W. J. (1998), Penalized Regression: The Bridge Versus the Lasso.
Journal of Computational and Graphical Statistics
Cheng W. and Wang W. (2014), Graph-regularized dual Lasso for robust eQTL mapping. Bioinformatics

Powell M.J.D. (2009), The BOBYQA algorithm for bound constrained optimization without derivatives.
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

Description

Finds the optimal shrinkage parameters using cross-validation for edgenet. We use the BOBYQA algorithm to find the optimial regularization parameters and coordinate descent in order to minimize the objective function of the linear model.

Usage

```
cv.edgenet(X, Y, G.X = NULL, G.Y = NULL, lambda = NULL, psigx = NULL,
    psigy \(=\) NULL, thresh \(=1 \mathrm{e}-05\), maxit \(=1 \mathrm{e}+05\), family = c("gaussian"),
    optim.epsilon = 0.001, optim.maxit = 10000, nfolds = 10)
```


Arguments

X
$\mathrm{Y} \quad$ output matrix, of dimension ($\mathrm{n} \times \mathrm{q}$) where n is the number of observations and q is the number of response variables Each row is an observation vector.
G.X non-negativ affinity matrix for n, of dimensions ($p \times p$) where p is the number of covariables X. Providing a graph G.X will optimize the regularization parameter psi.gx. If this is not desired just set G. X to NULL.
G.Y non-negativ affinity matrix for n, of dimensions ($q \times q$) where q is the number of responses Y. Providing a graph G.Y will optimize the regularization parameter psi.gy. If this is not desired just set G. Y to NULL.
lambda numerical shrinkage parameter for LASSO. Per default this parameter is set to NULL which means that lambda is going to be estimated using cross-validation. If any numerical value for lambda is set, estimation of the optimal parameter will not be conducted.
psigx numerical shrinkage parameter for graph-regularization of G.X. Per default this parameter is set to NULL which means that psigx is going to be estimated in the cross-validation. If any numerical value for psigx is set, estimation of the optimal parameter will not be conducted.
psigy numerical shrinkage parameter for graph-regularization of G.Y. Per default this parameter is set to NULL which means that psigy is going to be estimated in the cross-validation. If any numerical value for psigy is set, estimation of the optimal parameter will not be conducted.
thresh numerical threshold for coordinate descent
maxit maximum number of iterations for the coordinate descent (integer)
family family of response, e.g. gaussian
optim.epsilon numerical threshold criterion for the optimization to stop. Usually $1 \mathrm{e}-3$ is a good choice.
optim.maxit the maximum number of iterations for the optimization (integer). Usually 1e4 is a good choice.
nfolds the number of folds to be used - default is 10 (minimum 3, maximum nrow (X)).

Value

An object of class cv.edgenet

call	the call that produced the object
lambda	the estimated $(\mathrm{p} \times \mathrm{q})$-dimensional coefficient matrix B.hat
psigx	the estimated $(\mathrm{q} \times 1)$-dimensional vector of intercepts
psigy	the estimated $(\mathrm{q} \times 1)$-dimensional vector of intercepts

References

Dirmeier, Simon and Fuchs, Christiane and Mueller, Nikola S and Theis, Fabian J (2018), netReg: Network-regularized linear models for biological association studies.
Friedman J., Hastie T., Hoefling H. and Tibshirani R. (2007), Pathwise coordinate optimization. The Annals of Applied Statistics

Friedman J., Hastie T. and Tibshirani R. (2010), Regularization Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software
Fu W. J. (1998), Penalized Regression: The Bridge Versus the Lasso.
Journal of Computational and Graphical Statistics
Cheng W. and Wang W. (2014), Graph-regularized dual Lasso for robust eQTL mapping.
Bioinformatics

Powell M.J.D. (2009), The BOBYQA algorithm for bound constrained optimization without derivatives.
http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf

Examples

```
X <- matrix(rnorm(100*10), 100, 10)
b <- rnorm(10)
G.X <- matrix(rpois(10*10,1),10)
G.X <- t(G.X) + G.X
diag(G.X) <- 0
# fit a Gaussian model
Y <- X%*%b + rnorm(100)
cv.edge <- cv.edgenet(X=X, Y=Y, G.X=G.X, family="gaussian")
```

```
edgenet
Fit a graph-regularized linear regression model using edge-based reg-
``` ularization.

\section*{Description}

Fit a graph-regularized linear regression model using edge-penalization. The coefficients are computed using graph-prior knowledge in the form of one/two affinity matrices. Graph-regularization is an extension to previously introduced regularization techniques, such as the LASSO. For that reason we are also using coordinate descent for minimization of the objective function of the linear model.

\section*{Usage}
```

edgenet(X, Y, G.X = NULL, G.Y = NULL, lambda = 1, psigx = 1,
psigy = 1, thresh = 1e-05, maxit = 1e+05, family = c("gaussian"))

```

\section*{Arguments}
\(X \quad\) input matrix, of dimension (\(n \times p\)) where \(n\) is the number of observations and \(p\) is the number of covariables. Each row is an observation vector.
\(\mathrm{Y} \quad\) output matrix, of dimension (n xq) where n is the number of observations and \(q\) is the number of response variables. Each row is an observation vector.
G.X non-negativ affinity matrix for \(n\), of dimensions (\(p \times p\)) where \(p\) is the number of covariables X
G.Y non-negativ affinity matrix for \(n\), of dimensions (\(q \times q\)) where \(q\) is the number of responses \(Y\)
lambda numerical shrinkage parameter for LASSO.
psigx numerical shrinkage parameter for graph-regularization of G.X
psigy numerical shrinkage parameter for graph-regularization of G.Y
thresh numerical threshold for coordinate descent
maxit maximum number of iterations for coordinate descent (integer)
family family of response, e.g. gaussian

\section*{Value}

An object of class edgenet
coefficients the estimated (p x q)-dimensional coefficient matrix B.hat
intercept the estimated (\(\mathrm{q} \times 1\))-dimensional vector of intercepts
call the call that produced the object
family the family of the response

\section*{References}

Dirmeier, Simon and Fuchs, Christiane and Mueller, Nikola S and Theis, Fabian J (2018), netReg: Network-regularized linear models for biological association studies.
Bioinformatics
Friedman J., Hastie T., Hoefling H. and Tibshirani R. (2007), Pathwise coordinate optimization. The Annals of Applied Statistics

Friedman J., Hastie T. and Tibshirani R. (2010), Regularization Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software
Fu W. J. (1998), Penalized Regression: The Bridge Versus the Lasso.
Journal of Computational and Graphical Statistics
Cheng W. and Wang W. (2014), Graph-regularized dual Lasso for robust eQTL mapping.
Bioinformatics

\section*{Examples}
```

X <- matrix(rnorm(100*10), 100, 10)
b <- rnorm(10)
G.X <- matrix(rpois(100,1), 10)
G.X <- t(G.X) + G.X
diag(G.X) <- 0

# fit a Gaussian model

Y <- X%*%b + rnorm(100)
fit <- edgenet(X=X, Y=Y, G.X=G.X, family="gaussian")

```
predict.gaussian.edgenet

Predict method for gaussian edgenet fits

\section*{Description}

Predicts the estimated Y.hat values for a newdata design matrix X similar to the other predict methods, e.g. from glm and glmnet

\section*{Usage}
\#\# S3 method for class 'gaussian.edgenet'
predict(object, newdata \(=\) NULL, ...)

\section*{Arguments}
\begin{tabular}{ll}
object & a fitted object of class gaussian.edgenet \\
newdata & \begin{tabular}{l}
a new \((\mathrm{m} \times \mathrm{p})\)-dimensional design matrix with a variable number of observations \\
m, but a constant number of co-variables p
\end{tabular} \\
\(\ldots\) & further arguments
\end{tabular}

\section*{Value}

A (m x q)-dimensional matrix

\section*{Examples}
```


## Not run:

X <- matrix(rnorm(100*10),100,10)
G.X <- matrix(rpois(10*10,1),10)
G.X <- t(G.X) + G.X
diag(G.X) <- 0
Y <- matrix(rnorm(100*10),100,10)
fit <- edgenet(X=X, Y=Y, G.X=G.X, family="gaussian")
pred <- predict(fit, X)

## End(Not run)

```
yeast A sample yeast data set for regression

\section*{Description}

The yeast data set is a list containing three matrices that can be used as an example for using netReg. The data have been taken from the references listed below.

\section*{Usage}
data(yeast)

\section*{Format}

A list containing three matrices

\section*{Details}
- X (112 x 500)-dimensional binary matrix of 500 genetic markers for 112 yeast samples
- \(Y(112 \times 231)\)-dimensional double matrix of 231 gene expression values for 112 yeast samples
- GY (\(231 \times 231\))-dimensional adjaceny matrix representing protein-protein interactions for 231 yeast genes

\section*{References}

Brem, Rachel B., et al. (2005), Genetic interactions between polymorphisms that affect gene expression in yeast.
Nature
Storey, John D., Joshua M. Akey, and Leonid Kruglyak (2005), Multiple locus linkage analysis of genomewide expression in yeast.
PLoS Biology

\section*{Index}
* datasets
yeast, 7
* data
yeast, 7
* package
netReg-package, 2
cv.edgenet, 3
edgenet, 4
netReg-package, 2
predict.gaussian.edgenet, 6
yeast, 7```

