
Package ‘SingleR’
October 17, 2020

Title Reference-Based Single-Cell RNA-Seq Annotation
Version 1.2.4
Date 2020-05-24
Description Performs unbiased cell type recognition from single-cell RNA

sequencing data, by leveraging reference transcriptomic datasets of pure cell
types to infer the cell of origin of each single cell independently.

License GPL-3 + file LICENSE
Depends SummarizedExperiment
Imports methods, Matrix, S4Vectors, BiocGenerics, DelayedArray,

DelayedMatrixStats, BiocNeighbors, BiocParallel, BiocSingular,
stats, utils, Rcpp, ExperimentHub

LinkingTo Rcpp, beachmat
Suggests testthat, knitr, rmarkdown, BiocStyle, beachmat,

SingleCellExperiment, scater, scRNAseq, scran, ggplot2,
pheatmap, grDevices, gridExtra, viridis, AnnotationHub,
AnnotationDbi

biocViews Software, SingleCell, GeneExpression, Transcriptomics,
Classification, Clustering, Annotation

SystemRequirements C++11
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.0

URL https://github.com/LTLA/SingleR

BugReports https://support.bioconductor.org/

git_url https://git.bioconductor.org/packages/SingleR
git_branch RELEASE_3_11
git_last_commit 4653a3c
git_last_commit_date 2020-05-24
Date/Publication 2020-10-16
Author Dvir Aran [aut, cph],

Aaron Lun [ctb, cre],
Daniel Bunis [ctb],
Jared Andrews [ctb],
Friederike Dündar [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

https://github.com/LTLA/SingleR
https://support.bioconductor.org/

2 .mockRefData

R topics documented:
.mockRefData . 2
aggregateReference . 3
BlueprintEncodeData . 5
classifySingleR . 6
combine-predictions . 10
combineCommonResults . 11
combineRecomputedResults . 12
DatabaseImmuneCellExpressionData . 15
getDeltaFromMedian . 17
HumanPrimaryCellAtlasData . 18
ImmGenData . 19
matchReferences . 20
MonacoImmuneData . 21
MouseRNAseqData . 23
NovershternHematopoieticData . 24
plotScoreDistribution . 27
plotScoreHeatmap . 30
pruneScores . 34
SingleR . 37
trainSingleR . 40

Index 45

.mockRefData Mock data for examples

Description

Make up some test and reference data for the various examples in the SingleR package.

Usage

.mockRefData(ngroups = 5, nreps = 4, ngenes = 1000, prop = 0.5)

.mockTestData(mock.ref, ncells = 100)

Arguments

ngroups Integer scalar specifying the number of groups.

nreps Integer scalar specifying the number of replicates per group.

ngenes Integer scalar specifying the number of genes in the dataset.

prop Numeric scalar specifying the proportion of genes that are DE between groups.

mock.ref A SummarizedExperiment object produced by .mockRefData.

ncells Integer scalar specifying the number of cells to simulate.

Details

This functions are simply provided to simulate some data in the Examples of the documentation.
The simulations are very simple and should not be used for performance comparisons.

aggregateReference 3

Value

Both functions return a SummarizedExperiment object containing simulated counts in the counts
assay, with the group assignment of each sample in the "label" field of the colData.

Author(s)

Aaron Lun

Examples

ref <- .mockRefData()
test <- .mockTestData(ref)

aggregateReference Aggregate reference samples

Description

Aggregate reference samples for a given label by averaging their count profiles. This can be done
with varying degrees of resolution to preserve the within-label heterogeneity.

Usage

aggregateReference(
ref,
labels,
ncenters = NULL,
power = 0.5,
assay.type = "logcounts",
rank = 20,
subset.row = NULL,
check.missing = TRUE,
BPPARAM = SerialParam(),
BSPARAM = bsparam()

)

Arguments

ref A numeric matrix of reference expression values, usually containing log-expression
values. Alternatively, a SummarizedExperiment object containing such a ma-
trix.

labels A character vector or factor of known labels for all cells in ref.

ncenters Integer scalar specifying the maximum number of aggregated profiles to produce
for each label.

power Numeric scalar between 0 and 1 indicating how much aggregation should be
performed, see Details.

assay.type An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object.

4 aggregateReference

rank Integer scalar specfiying the number of principal components to use during clus-
tering.

subset.row Integer, character or logical vector indicating the rows of ref to use for k-means
clustering.

check.missing Logical scalar indicating whether rows should be checked for missing values
(and if found, removed).

BPPARAM A BiocParallelParam object indicating how parallelization should be performed.

BSPARAM A BiocSingularParam object indicating which SVD algorithm should be used in
runPCA.

Details

With single-cell reference datasets, it is often useful to aggregate individual cells into pseudo-bulk
samples to serve as a reference. This improves speed in downstream assignment with classifySingleR
or SingleR. The most obvious aggregation is to simply average all counts for all cells in a label
to obtain a single pseudo-bulk profile. However, this discards information about the within-label
heterogeneity (e.g., the “shape” and spread of the population in expression space) that may be in-
formative for assignment, especially for closely related labels.

The default approach in this function is to create a series of pseudo-bulk samples to represent each
label. This is achieved by performing vector quantization via k-means clustering on all cells in a
particular label. Cells in each cluster are subsequently averaged to create one pseudo-bulk sample
that serves as a representative for that location in the expression space. This reduces the number
of separate observations (for speed) while preserving some level of population heterogeneity (for
fidelity).

The number of pseudo-bulk samples per label is controlled by ncenters. By default, we set the
number of clusters to X^power where X is the number of cells for that label. This ensures that labels
with more cells have more resolved representatives. If ncenters is greater than the number of
samples for a label and/or power=1, no aggregation is performed. Setting power=0 will aggregate
all cells of a label into a single pseudo-bulk profile.

k-means clustering is actually performed on the first rank principal components as computed using
runPCA. The use of PCs compacts the data for more efficient operation of kmeans; it also removes
some of the high-dimensional noise to highlight major factors of within-label heterogenity. Note
that the PCs are only used for clustering and the full expression profiles are still used for the final
averaging. Users can disable the PCA step by setting rank=Inf.

Setting subset.row to an appropriate indexing vector will subset the matrix by gene prior to PCA.
However, again, the aggregation is performed on the full expression profiles. This option may be
useful for clustering based on known genes of interest but retaining all genes in the aggregated
results.

We use the average rather than the sum in order to be compatible with trainSingleR’s internal
marker detection. Moreover, unlike counts, the sum of transformed and normalized expression
values generally has little meaning. We do not use the median to avoid consistently obtaining zeros
for lowly expressed genes.

Value

A SummarizedExperiment object with a "logcounts" assay containing a matrix of aggregated
expression values, and a label column metadata field specifying the label corresponding to each
column.

BlueprintEncodeData 5

Author(s)

Aaron Lun

Examples

library(scater)
sce <- mockSCE()
sce <- logNormCounts(sce)

Making up some labels for demonstration purposes:
labels <- sample(LETTERS, ncol(sce), replace=TRUE)

Aggregation at different resolutions:
(aggr <- aggregateReference(sce, labels, power=0.5))

(aggr <- aggregateReference(sce, labels, power=0))

No aggregation:
(aggr <- aggregateReference(sce, labels, power=1))

BlueprintEncodeData Obtain human bulk RNA-seq data from Blueprint and ENCODE

Description

Download and cache the normalized expression values of 259 RNA-seq samples of pure stroma and
immune cells as generated and supplied by Blueprint and ENCODE.

Usage

BlueprintEncodeData(
rm.NA = c("rows", "cols", "both", "none"),
ensembl = FALSE,
cell.ont = c("all", "nonna", "none")

)

Arguments

rm.NA String specifying how missing values should be handled. "rows" will remove
genes with at least one missing value, "cols" will remove samples with at least
one missing value, "both" will remove any gene or sample with at least one
missing value, and "none" will not perform any removal.

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

6 classifySingleR

Details

This function provides normalized expression values for 259 bulk RNA-seq samples generated by
Blueprint and ENCODE from pure populations of stroma and immune cells (Martens and Stun-
nenberg, 2013; The ENCODE Consortium, 2012). The samples were processed and normalized as
described in Aran, Looney and Liu et al. (2019), i.e., the raw RNA-seq counts were downloaded
from Blueprint and ENCODE in 2016 and normalized via edgeR (TPMs).

Blueprint Epigenomics contains 144 RNA-seq pure immune samples annotated to 28 cell types.
ENCODE contains 115 RNA-seq pure stroma and immune samples annotated to 17 cell types.
All together, this reference contains 259 samples with 43 cell types ("label.fine"), manually
aggregated into 24 broad classes ("label.main"). The fine labels have also been mapped to the Cell
Ontology ("label.ont", if cell.ont is not "none"), which can be used for further programmatic
queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

References

The ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in the
human genome. Nature 489, pages 57–74.

Martens JHA and Stunnenberg HG (2013). BLUEPRINT: mapping human blood cell epigenomes.
Haematologica 98, 1487–1489.

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing
reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172.

Examples

ref.se <- BlueprintEncodeData(rm.NA = "rows")

classifySingleR Classify cells with SingleR

Description

Assign labels to each cell in a test dataset, using a pre-trained classifier combined with an iterative
fine-tuning approach.

classifySingleR 7

Usage

classifySingleR(
test,
trained,
quantile = 0.8,
fine.tune = TRUE,
tune.thresh = 0.05,
sd.thresh = NULL,
prune = TRUE,
assay.type = "logcounts",
check.missing = TRUE,
BPPARAM = SerialParam()

)

Arguments

test A numeric matrix of single-cell expression values where rows are genes and
columns are cells.
Alternatively, a SummarizedExperiment object containing such a matrix.

trained A List containing the output of the trainSingleR function. Alternatively, a List
of Lists produced by trainSingleR for multiple references.

quantile A numeric scalar specifying the quantile of the correlation distribution to use to
compute the score for each label.

fine.tune A logical scalar indicating whether fine-tuning should be performed.

tune.thresh A numeric scalar specifying the maximum difference from the maximum corre-
lation to use in fine-tuning.

sd.thresh A numeric scalar specifying the threshold on the standard deviation, for use
in gene selection during fine-tuning. This is only used if genes="sd" when
constructing trained and defaults to the value used in trainSingleR.

prune A logical scalar indicating whether label pruning should be performed.

assay.type Integer scalar or string specifying the matrix of expression values to use if test
is a SummarizedExperiment.

check.missing Logical scalar indicating whether rows should be checked for missing values
(and if found, removed).

BPPARAM A BiocParallelParam object specifyign the parallelization scheme to use.

Details

Consider each cell in the test set test and each label in the training set. We compute Spearman’s
rank correlations between the test cell and all cells in the training set with the given label, based on
the expression profiles of the genes selected by trained. The score is defined as the quantile of the
distribution of correlations, as specified by quantile. (Technically, we avoid explicitly computing
all correlations by using a nearest neighbor search, but the resulting score is the same.) After
repeating this across all labels, the label with the highest score is used as the prediction for that cell.

If fine.tune=TRUE, an additional fine-tuning step is performed for each cell to improve resolution.
We identify all labels with scores that are no more than tune.thresh below the maximum score.
These labels are used to identify a fresh set of marker genes, and the calculation of the score is
repeated using only these genes. The aim is to refine the choice of markers and reduce noise when

8 classifySingleR

distinguishing between closely related labels. The best and next-best scores are reported in the
output for use in diagnostics, e.g., pruneScores.

The default assay.type is set to "logcounts" simply for consistency with trainSingleR. In
practice, the raw counts (for UMI data) or the transcript counts (for read count data) can also be used
without normalization and log-transformation. Any monotonic transformation will have no effect
the calculation of the correlation values other than for some minor differences due to numerical
precision.

If prune=TRUE, label pruning is performed as described in pruneScores with default arguments.
This aims to remove low-quality labels that are ambiguous or correspond to misassigned cells.
However, the default settings can be somewhat aggressive and discard otherwise useful labels in
some cases - see ?pruneScores for details.

If trained was generated from multiple references, the per-reference statistics are combined into a
single DataFrame of results. This is done using combineRecomputedResults if recompute=TRUE
in trainSingleR, otherwise it is done using combineCommonResults.

Value

A DataFrame where each row corresponds to a cell in test. In the case of a single reference, this
contains:

• scores, a numeric matrix of correlations at the specified quantile for each label (column) in
each cell (row). This will contain NAs if multiple references were supplied to trainSingleR
with recompute=TRUE.

• first.labels, a character vector containing the predicted label before fine-tuning. Only
added if fine.tune=TRUE.

• tuned.scores, a DataFrame containing first and second. These are numeric vectors con-
taining the best and next-best scores at the final round of fine-tuning for each cell. Only added
if fine.tune=TRUE.

• labels, a character vector containing the predicted label based on the maximum entry in
scores.

• pruned.labels, a character vector containing the pruned labels where “low-quality”. els are
replaced with NAs. Only added if prune=TRUE.

The metadata of the DataFrame contains:

• common.genes, a character vector of genes used to compute the correlations prior to fine-
tuning.

• de.genes, a list of list of genes used to distinguish between each pair of labels. Only returned
if genes="de" when constructing trained, see ?trainSingleR for more details.

In the case of multiple references, the output of combineCommonResults or combineRecomputedResults
is returned. This is a DataFrame containing:

• scores, a numeric matrix of scores for each cell (row) across all labels in all references
(columns). This will contain NAs if recomputation is performed.

• labels, first.labels (if fine.tune=TRUE) and pruned.labels (if prune=TRUE), contain-
ing the consolidated labels of varying flavors as described above.

• orig.results, a DataFrame of DataFrames containing the results of running classifySingleR
against each individual reference. Each nested DataFrame has the same format as described
above.

The metadata of the top-level DataFrame contains common.genes if recomputation is not per-
formed.

classifySingleR 9

Author(s)

Aaron Lun, based on the original SingleR code by Dvir Aran.

See Also

trainSingleR, to prepare the training set for classification.

pruneScores, to remove low-quality labels based on the scores.

combineCommonResults, to combine results from multiple references.

Examples

##############################
Mocking up training data
##############################

Ngroups <- 5
Ngenes <- 1000
means <- matrix(rnorm(Ngenes*Ngroups), nrow=Ngenes)
means[1:900,] <- 0
colnames(means) <- LETTERS[1:5]

g <- rep(LETTERS[1:5], each=4)
ref <- SummarizedExperiment(

list(counts=matrix(rpois(1000*length(g),
lambda=10*2^means[,g]), ncol=length(g))),

colData=DataFrame(label=g)
)
rownames(ref) <- sprintf("GENE_%s", seq_len(nrow(ref)))

ref <- scater::logNormCounts(ref)
trained <- trainSingleR(ref, ref$label)

###############################
Mocking up some test data
###############################

N <- 100
g <- sample(LETTERS[1:5], N, replace=TRUE)
test <- SummarizedExperiment(

list(counts=matrix(rpois(1000*N, lambda=2^means[,g]), ncol=N)),
colData=DataFrame(cluster=g)

)

rownames(test) <- sprintf("GENE_%s", seq_len(nrow(test)))
test <- scater::logNormCounts(test)

###############################
Performing classification
###############################

pred <- classifySingleR(test, trained)
table(predicted=pred$labels, truth=g)

10 combine-predictions

combine-predictions Combining results from different references

Description

It is often desirable to combine information from separate references, thus improving the quality
and breadth of the cell type annotation. However, it is not trivial due to the presence of batch effects
across references (from differences in technology, experimental protocol or the biological system)
as well as differences in the annotation vocabulary between investigators. This page describes some
of the considerations with choosing a strategy to combine information from multiple reference
datasets.

Option 1 - using reference-specific labels

This option nests each label within each reference data, (e.g., “Ref1-Bcell” vs “Ref2-Bcell”). It is
most applicable if there are relevant biological differences between the references, e.g., one refer-
ence is concerned with healthy tissue while the other reference considers diseased tissue.

In practical terms, this option is easily implemented by just cbinding the expression matrices to-
gether and pasteing the reference name onto the corresponding character vector of labels. There is
no need for time-consuming label harmonization between references.

However, the fact that we are comparing across references means that the marker set is likely to
contain genes responsible for uninteresting batch effects. This will increase noise during the cal-
culation of the score in each reference, possibly leading to a loss of precision and a greater risk of
technical variation dominating the classification results.

Option 2 - using harmonized labels

This option also involves combining the reference datasets into a single matrix but with harmoniza-
tion of the labels so that the same cell type is given the same label across references. This would
allow feature selection methods to identify robust sets of label-specific markers that are more likely
to generalize to other datasets. It would also simplify interpretation, as there is no need to worry
about the reference from which the labels came.

The most obvious problem with this approach is that it assumes that harmonized labels are available.
This is not always the case due to differences in naming schemes (e.g. "B cell" vs "B") between
references. Another problem is that of differences in label resolution across references (e.g., how to
harmonize "B cell" to another reference that splits to "naive B cell" and "mature B cell").

To mitigate this, SingleR datasets (e.g., ImmGenData) have all their labels mapped to the Cell On-
tology, allowing the use of standard terms to refer to the same cell type across references. Users can
then traverse the ontology graph to achieve a consistent label resolution across references.

Option 3 - comparing scores across the union of markers

This option involves performing classification separately within each reference, then collating the
results to choose the label with the highest score across references. This is a relatively expedi-
ent approach that avoids the need for explicit harmonization while also reduces the potential for
reference-specific markers. It is also logistically simpler as it allows each reference to be processed
separately (more or less, depending on the exact algorithm) for embarrassing parallelization.

It leaves a mixture of labels in the final results that is up to the user to resolve, though perhaps this
may be considered a feature as it smoothly handles differences in resolution between references,
e.g., a cell that cannot be resolved as a CD4+ or CD8+ T cell may simply fall back to "T cell".

combineCommonResults 11

It will also be somewhat suboptimal if there are many reference-specific labels, as markers are
not identified with the aim of distinguishing a label in one reference from another label in another
reference.

Author(s)

Aaron Lun

See Also

combineCommonResults and combineRecomputedResults, for the functions that implement vari-
ants of Option 3.

matchReferences, to harmonize labels between reference datasets.

combineCommonResults Combine SingleR results with common genes

Description

Combine results from multiple runs of classifySingleR (usually against different references) into
a single DataFrame. For each cell, the label from the result with the highest score is used as that
cell’s combined label. This assumes that each run of classifySingleR was performed using a
common set of marker genes, hence the Common in the function name.

Usage

combineCommonResults(results)

Arguments

results A list of DataFrame prediction results as returned by classifySingleR when
run on each reference separately.

Details

For each cell, we identify the reference with the highest score across all of its labels. The “com-
bined label” is then defined as the label assigned to that cell in the highest-scoring reference.
(The same logic is also applied to the first and pruned labels, if available.) See comments in
?"combine-predictions" for the overall rationale.

Each result should be generated from training sets that use a common set of genes during classifi-
cation, i.e., common.genes should be the same in the trained argument to each classifySingleR
call. This is because the scores are not comparable across results if they were generated from dif-
ferent sets of genes. It is also for this reason that we use the highest score prior to fine-tuning, even
if it does not correspond to the score of the fine-tuned label.

It is highly unlikely that this function will be called directly by the end-user. Users are advised to
use the multi-reference mode of SingleR and related functions, which will take care of the use of a
common set of genes before calling this function to combine results across references.

12 combineRecomputedResults

Value

A DataFrame is returned containing the annotation statistics for each cell or cluster (row). This
mimics the output of classifySingleR and contains the following fields:

• scores, a numeric matrix of correlations formed by combining the equivalent matrices from
results.

• labels, a character vector containing the per-cell combined label across references.

• references, an integer vector specifying the reference from which the combined label was
derived.

• orig.results, a DataFrame containing results.

It may also contain first.labels and pruned.labels if these were also present in results.

The metadata contains common.genes, a character vector of the common genes that were used
across all references in results.

Author(s)

Jared Andrews, Aaron Lun

See Also

SingleR and classifySingleR, for generating predictions to use in results.

combineRecomputedResults, for another approach to combining predictions.

Examples

Making up data (using one reference to seed another).
ref <- .mockRefData(nreps=8)
ref1 <- ref[,1:2%%2==0]
ref2 <- ref[,1:2%%2==1]
ref2$label <- tolower(ref2$label)

test <- .mockTestData(ref1)

Applying classification with SingleR's multi-reference mode.
ref1 <- scater::logNormCounts(ref1)
ref2 <- scater::logNormCounts(ref2)
test <- scater::logNormCounts(test)

pred <- SingleR(test, list(ref1, ref2), labels=list(ref1$label, ref2$label))
pred[,1:5] # Only viewing the first 5 columns for visibility.

combineRecomputedResults

Combine SingleR results with recomputation

combineRecomputedResults 13

Description

Combine results from multiple runs of classifySingleR (usually against different references) into
a single DataFrame. The label from the results with the highest score for each cell is retained.
Unlike combineCommonResults, this does not assume that each run of classifySingleR was per-
formed using the same set of common genes, instead recomputing the scores for comparison across
references.

Usage

combineRecomputedResults(
results,
test,
trained,
quantile = 0.8,
assay.type.test = "logcounts",
check.missing = TRUE,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

results A list of DataFrame prediction results as returned by classifySingleR when
run on each reference separately.

test A numeric matrix of single-cell expression values where rows are genes and
columns are cells. Alternatively, a SummarizedExperiment object containing
such a matrix.

trained A list of Lists containing the trained outputs of multiple references, equivalent to
either (i) the output of trainSingleR on multiple references with recompute=TRUE,
or (ii) running trainSingleR on each reference separately and manually mak-
ing a list of the trained outputs.

quantile Further arguments to pass to classifySingleR.
assay.type.test

An integer scalar or string specifying the assay of test containing the relevant
expression matrix, if test is a SummarizedExperiment object.

check.missing Logical scalar indicating whether rows should be checked for missing values
(and if found, removed).

BNPARAM A BiocNeighborParam object specifying the algorithm to use for building near-
est neighbor indices.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed,
if any.

Details

This function implements a variant of Option 3 described in ?"combine-predictions". For a
given cell in test, we extract its assigned label from results for each reference. We also retrieve
the marker genes associated with that label and take the union of markers across all references.
This defines a common feature space in which the score for each reference’s assigned label is
recomputed using ref; the label from the reference with the top recomputed score is then reported
as the combined annotation for that cell.

14 combineRecomputedResults

Unlike combineCommonResults, the union of markers is not used for the within-reference calls.
This avoids the inclusion of noise from irrelevant genes in the within-reference assignments. Ob-
viously, combineRecomputedResults is slower as it does require recomputation of the scores, but
the within-reference calls are faster as there are fewer genes in the union of markers for assigned
labels (compared to the union of markers across all labels, as required by combineCommonResults),
so it is likely that the net compute time should be lower.

It is strongly recommended that the universe of genes be the same across all references. The inter-
section of genes across all ref and test is used when recomputing scores, and differences in the
availability of genes between references may have unpredictable effects.

Value

A DataFrame is returned containing the annotation statistics for each cell or cluster (row). This
mimics the output of classifySingleR and contains the following fields:

• scores, a numeric matrix of correlations containing the recomputed scores. For any given
cell, entries of this matrix are only non-NA for the assigned label in each reference; scores are
not recomputed for the other labels.

• labels, a character vector containing the per-cell combined label across references.

• references, an integer vector specifying the reference from which the combined label was
derived.

• orig.results, a DataFrame containing results.

It may also contain first.labels and pruned.labels if these were also present in results.

Author(s)

Aaron Lun

References

Lun A, Bunis D, Andrews J (2020). Thoughts on a more scalable algorithm for multiple references.
https://github.com/LTLA/SingleR/issues/94

See Also

SingleR and classifySingleR, for generating predictions to use in results.

combineCommonResults, for another approach to combining predictions.

Examples

Making up data.
ref <- .mockRefData(nreps=8)
ref1 <- ref[,1:2%%2==0]
ref2 <- ref[,1:2%%2==1]
ref2$label <- tolower(ref2$label)

test <- .mockTestData(ref)

Performing classification within each reference.
test <- scater::logNormCounts(test)

ref1 <- scater::logNormCounts(ref1)
train1 <- trainSingleR(ref1, labels=ref1$label)

https://github.com/LTLA/SingleR/issues/94

DatabaseImmuneCellExpressionData 15

pred1 <- classifySingleR(test, train1)

ref2 <- scater::logNormCounts(ref2)
train2 <- trainSingleR(ref2, labels=ref2$label)
pred2 <- classifySingleR(test, train2)

Combining results with recomputation of scores.
combined <- combineRecomputedResults(

results=list(pred1, pred2),
test=test,
trained=list(train1, train2))

combined[,1:5]

DatabaseImmuneCellExpressionData

Obtain human bulk RNA-seq data from DICE

Description

Download and cache the normalized expression values of 1561 bulk RNA-seq samples of sorted
cell populations from the Database of Immune Cell Expression (DICE).

Usage

DatabaseImmuneCellExpressionData(
ensembl = FALSE,
cell.ont = c("all", "nonna", "none")

)

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values of 1561 bulk RNA-seq samples generated by
DICE from pure populations of human immune cells.

TPM normalized values for each cell type were downloaded from https://dice-database.org/
downloads. Genes with no reads across samples were removed, and values were log2 normalized
after a pseudocount of 1 was added.

The dataset contains 1561 human RNA-seq samples annotated to 5 main cell types ("label.main"):

• B cells

• Monocytes

• NK cells

https://dice-database.org/downloads
https://dice-database.org/downloads

16 DatabaseImmuneCellExpressionData

• T cells, CD8+

• T cells, CD4+

Samples were additionally annotated to 15 fine cell types ("label.fine"):

• B cells, naive

• Monocytes, CD14+

• Monocytes, CD16+

• NK cells

• T cells, memory TREG

• T cells, CD4+, naive

• T cells, CD4+, naive, stimulated

• T cells, CD4+, naive Treg

• T cells, CD4+, Th1

• T cells, CD4+, Th1_17

• T cells, CD4+, Th2

• T cells, CD8+, naïve

• T cells, CD8+, naïve, stimulated

• T cells, CD4+, TFH

• T cells, CD4+, Th17

The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not
"none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Jared Andrews

References

Schmiedel B et al. (2018). Impact of Genetic Polymorphisms on Human Immune Cell Gene Ex-
pression. Cell 175, 1701-1715.

Examples

ref.se <- DatabaseImmuneCellExpressionData()

getDeltaFromMedian 17

getDeltaFromMedian Compute the difference from median

Description

Compute the delta value for each cell, defined as the difference between the score for the assigned
label and the and median score across all labels.

Usage

getDeltaFromMedian(results)

Arguments

results A DataFrame containing the output generated by SingleR or classifySingleR.

Details

This funciton computes the same delta value that is used in pruneScores, for users who want to
apply more custom filters or visualizations.

Value

A numeric vector containing delta values for each cell in results.

Author(s)

Aaron Lun

See Also

pruneScores, where the delta values are used.

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)

summary(getDeltaFromMedian(pred))

18 HumanPrimaryCellAtlasData

HumanPrimaryCellAtlasData

Obtain the HPCA data

Description

Download and cache the normalized expression values of the data stored in the Human Primary
Cell Atlas. The data will be downloaded from ExperimentHub, returning a SummarizedExperiment
object for further use.

Usage

HumanPrimaryCellAtlasData(
ensembl = FALSE,
cell.ont = c("all", "nonna", "none")

)

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values for 713 microarray samples from the Human
Primary Cell Atlas (HPCA) (Mabbott et al., 2013). These 713 samples were processed and normal-
ized as described in Aran, Looney and Liu et al. (2019).

Each sample has been assigned to one of 37 main cell types ("label.main") and 157 subtypes
("label.fine"). The subtypes have also been mapped to the Cell Ontology ("label.ont", if
cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

References

Mabbott NA et al. (2013). An expression atlas of human primary cells: inference of gene function
from coexpression networks. BMC Genomics 14, Article 632.

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing
reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172.

ImmGenData 19

Examples

ref.se <- HumanPrimaryCellAtlasData()

ImmGenData Obtain mouse bulk expression data from the Immunologic Genome
Project

Description

Download and cache the normalized expression values of 830 microarray samples of pure mouse
immune cells, generated by the Immunologic Genome Project (ImmGen).

Usage

ImmGenData(ensembl = FALSE, cell.ont = c("all", "nonna", "none"))

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

Details

This function provides normalized expression values of 830 microarray samples generated by Im-
mGen from pure populations of murine immune cells (<http://www.immgen.org/>). The samples
were processed and normalized as described in Aran, Looney and Liu et al. (2019), i.e., CEL
files from the Gene Expression Omnibus (GEO; GSE15907 and GSE37448), were downloaded,
processed, and normalized using the robust multi-array average (RMA) procedure on probe-level
data.

This dataset consists of 20 broad cell types ("label.main") and 253 finely resolved cell subtypes
("label.fine"). The subtypes have also been mapped to the Cell Ontology ("label.ont", if
cell.ont is not "none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

References

Heng TS, Painter MW, Immunological Genome Project Consortium (2008). The Immunological
Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091-1094.

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing
reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172.

20 matchReferences

Examples

ref.se <- ImmGenData()

matchReferences Match labels from two references

Description

Match labels from a pair of references, corresponding to the same underlying cell type or state but
with differences in nomenclature.

Usage

matchReferences(ref1, ref2, labels1, labels2, ...)

Arguments

ref1, ref2 Numeric matrices of single-cell (usually log-transformed) expression values where
rows are genes and columns are cells. Alternatively, SummarizedExperiment
objects containing such matrices.

labels1, labels2

A character vector or factor of known labels for all cells in ref1 and ref2,
respectively.

... Further arguments to pass to SingleR.

Details

It is often the case that two references contain the same cell types for the same biological system,
but the two sets of labels differ in their nomenclature. This makes it difficult to compare results
from different references. It also interferes with attempts to combine multiple datasets to create a
larger, more comprehensive reference.

The matchReferences function attempts to facilitate matching of labels across two reference datasets.
It does so by using one of the references (say, ref1) to assign its labels to the other (ref2). For
each label X in labels2, we compute the probability of assigning a sample of X to each label Y in
labels1. We also use ref2 to assign labels to ref1, to obtain the probability of assigning a sample
of Y to label X.

We then consider the probability of mutual assignment, i.e., assigning a sample of X to Y and a
sample of Y to X. This is computed by simply taking the product of the two probabilities mentioned
earlier. The output matrix contains mutual assignment probabilities for all pairs of X (rows) and Y
(columns).

The mutual assignment probabilities are only high if there is a 1:1 mapping between labels. A
perfect mapping manifests as probabilities of 1 in the relevant entries of the output matrix. Lower
values are expected for ambiguous mappings and near-zero values for labels that are specific to one
reference.

Value

A numeric matrix containing a probability table of mutual assignment. Values close to 1 represent
a 1:1 mapping between labels across the two references.

MonacoImmuneData 21

Author(s)

Aaron Lun

See Also

SingleR, to do the actual cross-assignment.

Examples

example(SingleR, echo=FALSE)
test$label <- paste0(test$label, "_X") # modifying the labels.
matchReferences(test, ref, labels1=test$label, labels2=ref$label)

MonacoImmuneData Obtain bulk RNA-seq data of sorted human immune cells

Description

Download and cache the normalized expression values of 114 bulk RNA-seq samples of sorted
immune cell populations that can be found in GSE107011.

Usage

MonacoImmuneData(ensembl = FALSE, cell.ont = c("all", "nonna", "none"))

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

Details

The dataset contains 114 human RNA-seq samples annotated to 10 main cell types ("label.main"):

• CD8+ T cells

• T cells

• CD4+ T cells

• Progenitors

• B cells

• Monocytes

• NK cells

• Dendritic cells

• Neutrophils

• Basophils

Samples were additionally annotated to 29 fine cell types ("label.fine"):

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107011

22 MonacoImmuneData

• Naive CD8 T cells

• Central memory CD8 T cells

• Effector memory CD8 T cells

• Terminal effector CD8 T cells

• MAIT cells

• Vd2 gd T cells

• Non-Vd2 gd T cells

• Follicular helper T cells

• T regulatory cells

• Th1 cells

• Th1/Th17 cells

• Th17 cells

• Th2 cells

• Naive CD4 T cells

• Terminal effector CD4 T cells

• Progenitor cells

• Naive B cells

• Non-switched memory B cells

• Exhausted B cells

• Switched memory B cells

• Plasmablasts

• Classical monocytes

• Intermediate monocytes

• Non classical monocytes

• Natural killer cells

• Plasmacytoid dendritic cells

• Myeloid dendritic cells

• Low-density neutrophils

• Low-density basophils

The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not
"none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Jared Andrews

References

Monaco G et al. (2019). RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute
Deconvolution of Human Immune Cell Types Cell Rep. 26, 1627-1640.

MouseRNAseqData 23

Examples

ref.se <- MonacoImmuneData()

MouseRNAseqData Obtain mouse bulk expression data of sorted cell populations (RNA-
seq)

Description

Download and cache the normalized expression values of 358 bulk RNA-seq samples of sorted cell
populations that can be found at GEO.

Usage

MouseRNAseqData(ensembl = FALSE, cell.ont = c("all", "nonna", "none"))

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

Details

This dataset was contributed by the Benayoun Lab that identified, downloaded and processed data
sets on GEO that corresponded to sorted cell types (Benayoun et al., 2019).

The dataset contains 358 mouse RNA-seq samples annotated to 18 main cell types ("label.main"):

• Adipocytes

• Astrocytes

• B cells

• Cardiomyocytes

• Dendritic cells

• Endothelial cells

• Epithelial cells

• Erythrocytes

• Fibroblasts

• Granulocytes

• Hepatocytes

• Macrophages

• Microglia

• Monocytes

• Neurons

24 NovershternHematopoieticData

• NK cells

• Oligodendrocytes

• T cells

These are split further into 28 subtypes ("label.fine"). The subtypes have also been mapped
to the Cell Ontology ("label.ont", if cell.ont is not "none"), which can be used for further
programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Friederike Dündar

References

Benayoun B et al. (2019). Remodeling of epigenome and transcriptome landscapes with aging in
mice reveals widespread induction of inflammatory responses. Genome Res. 29, 697-709.

Code at https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018/tree/
master/FigureS7_CIBERSORT/RNAseq_datasets_for_Deconvolution/2017-01-18

Examples

ref.se <- MouseRNAseqData()

NovershternHematopoieticData

Obtain bulk microarray expression for sorted hematopoietic cells

Description

Download and cache the normalized expression values of 211 bulk human microarray samples of
sorted hematopoietic cell populations that can be found in GSE24759.

Usage

NovershternHematopoieticData(
ensembl = FALSE,
cell.ont = c("all", "nonna", "none")

)

Arguments

ensembl Logical scalar indicating whether to convert row names to Ensembl IDs. Genes
without a mapping to a non-duplicated Ensembl ID are discarded.

cell.ont String specifying whether Cell Ontology terms should be included in the colData.
If "nonna", all samples without a valid term are discarded; if "all", all samples
are returned with (possibly NA) terms; if "none", terms are not added.

https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018/tree/master/FigureS7_CIBERSORT/RNAseq_datasets_for_Deconvolution/2017-01-18
https://github.com/BenayounLaboratory/Mouse_Aging_Epigenomics_2018/tree/master/FigureS7_CIBERSORT/RNAseq_datasets_for_Deconvolution/2017-01-18
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24759

NovershternHematopoieticData 25

Details

The dataset contains 211 human microarray samples annotated to 16 main cell types ("label.main"):

• Basophils

• B cells

• CMPs

• Dendritic cells

• Eosinophils

• Erythroid cells

• GMPS

• Granulocytes

• HSCs

• Megakaryocytes

• MEPs

• Monocytes

• NK cells

• NK T cells

• CD8+ T cells

• CD4+ T cells

Samples were additionally annotated to 38 fine cell types ("label.fine"):

• Basophils

• Naive B cells

• Mature B cells class able to switch

• Mature B cells

• Mature B cells class switched

• Common myeloid progenitors

• Plasmacytoid Dendritic Cells

• Myeloid Dendritic Cells

• Eosinophils

• Erythroid_CD34+ CD71+ GlyA-

• Erythroid_CD34- CD71+ GlyA-

• Erythroid_CD34- CD71+ GlyA+

• Erythroid_CD34- CD71lo GlyA+

• Erythroid_CD34- CD71- GlyA+

• Granulocyte/monocyte progenitors

• Colony Forming Unit-Granulocytes

• Granulocyte (Neutrophilic Metamyelocytes)

• Granulocyte (Neutrophils)

• Hematopoietic stem cells_CD133+ CD34dim

• Hematopoietic stem cell_CD38- CD34+

26 NovershternHematopoieticData

• Colony Forming Unit-Megakaryocytic

• Megakaryocytes

• Megakaryocyte/erythroid progenitors

• Colony Forming Unit-Monocytes

• Monocytes

• Mature NK cells_CD56- CD16+ CD3-

• Mature NK cells_CD56+ CD16+ CD3-

• Mature NK cells_CD56- CD16- CD3-

• NK T cells

• Early B cells

• Pro B cells

• CD8+ Effector Memory RA

• Naive CD8+ T cells

• CD8+ Effector Memory

• CD8+ Central Memory

• Naive CD4+ T cells

• CD4+ Effector Memory

• CD4+ Central Memory

The subtypes have also been mapped to the Cell Ontology ("label.ont", if cell.ont is not
"none"), which can be used for further programmatic queries.

Value

A SummarizedExperiment object with a "logcounts" assay containing the log-normalized expres-
sion values, along with cell type labels in the colData.

Author(s)

Jared Andrews

References

Novershtern N et al. (2011). Densely interconnected transcriptional circuits control cell states in
human hematopoiesis. Cell 144, 296-309.

Examples

ref.se <- NovershternHematopoieticData()

plotScoreDistribution 27

plotScoreDistribution Plot score distributions of labels.

Description

Plot score distributions of labels.

Usage

plotScoreDistribution(
results,
show = c("scores", "delta.med", "delta.next"),
labels.use = colnames(results$scores),
scores.use = NULL,
calls.use = 0,
pruned.use = 0,
size = 0.5,
ncol = 5,
dots.on.top = TRUE,
this.color = "#F0E442",
pruned.color = "#E69F00",
other.color = "gray60",
show.nmads = 3,
show.min.diff = NULL,
grid.vars = list()

)

Arguments

results A DataFrame containing the output from SingleR, classifySingleR, combineCommonResults,
or combineRecomputedResults).

show String specifying whether to show the scores ("scores"), the difference from
the median ("delta.med") or the difference from the next-best score ("delta.next").

labels.use String vector indicating one or more labels to show. If NULL, all labels available
in results are presented.

scores.use Integer scalar specifying which scores to use. This can refer to any column
index of results$orig.results to use scores from individual references of a
combined prediction (see ?combine-predictions), or to the top-level results
which is indicated by the value 0.
Alternatively, scores.use can be an integer vector containing multiple such
column indices (or zero). In such cases, multiple plots will be created showing
multiple sets of scores.
Default setting, scores.use=NULL, will create plots for all targets that make
sense: when show="scores" plots are created for top-level results & all indi-
vidual references; when show="delta.med" or "delta.next", plots are created
for all individual references.

calls.use, pruned.use

Integer scalar specifying which chosen labels or pruning calls to use, defaulting
to those from the top-level results which is indicated by the value 0. However,

28 plotScoreDistribution

this can also refer to any column index of results$orig.results to use labels
from individual references of a combined prediction (see ?combine-predictions).
Alternatively, an integer vector of the same length as scores.use, specifying
the labels to use in each plot generated by scores.use.

size Numeric scalar to set the size of the dots.
ncol Integer scalar to set the number of labels to display per row.
dots.on.top Logical specifying whether cell dots should be plotted on top of the violin plots.
this.color String specifying the color for cells that were assigned to the label.
pruned.color String specifying the color for cells that were assigned to the label but pruned.
other.color String specifying the color for other cells not assigned to the label.
show.nmads Numeric scalar that shows the threshold that would be used for pruning with

pruneScores. Only used when show="delta.med".
show.min.diff Numeric scalar that shows the threshold that would be used for pruning with

pruneScores. Only used when show="delta.med" or "delta.next".
grid.vars named list of extra variables to pass to grid.arrange, used when scores.use

is of length greater than 1. If NULL, the function will not arrange plots in a grid
and will instead output them as a list. Doing so outputs them one after another
on the graphics device.

Details

This function creates jitter and violin plots showing assignment scores or related values for all cells
across one or more labels. It is intended for visualizing and adjusting the nmads, min.diff.med, and
min.diff.next cutoffs of the pruneScores function, or for comparing scores accross predictions
when multiple references were used (see ?combine-predictions).

The show argument determines what values to show on the y-axis. Options are:

• "scores", the raw assignment scores (prior to fine-tuning).
• "delta.med", the difference between the score of the assigned label and the median of all

scores for each cell.
• "delta.next", the difference between best and second-best tuning scores of each cell.

For a given label X, cells distributions in several categories are shown:

• Was assigned to label X, and the label was not pruned away.
• Was assigned to label X, and the label was pruned away.
• Was assigned as any label, except label X.

Each category is grouped and colored separately based on this.color and related parameters.

Values are stratified according to the assigned labels in results$labels. If any fine-tuning was
performed, the highest scoring label for an individual cell may not be its final label. This may
manifest as negative values when show="delta.med".

Also note that pruneScores trims based on the min.diff.med and min.diff.next cutoffs first, be-
fore calculating the first-labels’ delta medians. Thus, the actual nmads cut-off used in pruneScores
may vary from the one portrayed in the plot.

Value

One or more ggplot objects showing assignment scores in violin plots is generated on the current
graphics device. Or such objects are returned one-by-one as a list if scores.use is of length greater
than 1, and grid.vars is set to NULL.

plotScoreDistribution 29

Working with combined results

When results are the output of a combined prediction (see ?combine-predictions), scores.use,
calls.use, and pruned.use are used to indicate which prediction’s scores, chosen labels, and
pruning calls should be utilized.

• scores.use sets which prediction’s scores to create distribution plots for.

• calls.use sets which prediction’s label calls to use for grouping scores and coloring the
distributions.

• pruned.use sets which prediction’s pruning calls to use for splitting cells assigned to each
label into "assigned" versus "pruned".

Values of these inputs can be:

• 0: the top-level "combined" scores or calls.

• Any positive integer: indicates the index of an individual prediction within results$orig.results.

Author(s)

Daniel Bunis and Aaron Lun

See Also

SingleR, to generate scores.

pruneScores, to remove low-quality labels based on the scores, and to see more about the quailty
cutoffs.

grid.arrange, for tweaks to the how plots are arranged when multiple are output together.

Examples

example(SingleR, echo=FALSE)

To show the distribution of scores grouped by label:
plotScoreDistribution(results = pred)
We can display a particular label using the label
plotScoreDistribution(results = pred,

labels.use = "B")

To show the distribution of deltas between cells' maximum and median scores,
grouped by label, change 'show' to "delta.med":
This is useful for checking/adjusting nmads and min.diff.med cutoffs
plotScoreDistribution(results = pred,

show = "delta.med")

To show the distribution of deltas between cells' top 2 fine-tuning scores,
grouped by label, change `show` to "delta.next":
This is useful for checking/adjusting min.diff.next cutoffs
plotScoreDistribution(results = pred, show = "delta.next")

Visualizing and adjusting pruning cutoffs

The default nmads cutoff of 3 is displayed when 'show = "delta.med"', but
this can be adjusted or turned off with 'show.nmads'
plotScoreDistribution(results = pred,

30 plotScoreHeatmap

show = "delta.med", show.nmads = 2)
plotScoreDistribution(results = pred,

show = "delta.med", show.nmads = NULL)

A min.diff cutoff can be shown using 'show.min.diff' when
'show = "delta.med"' or 'show = "delta.next"'
plotScoreDistribution(results = pred,

show = "delta.med", show.min.diff = 0.03)
plotScoreDistribution(results = pred,

show = "delta.next", show.min.diff = 0.03)

Multi-Reference Compatibility

When SingleR is run with multiple references, default output will contain
separate plots for each original reference, as well as for the the combined
set when 'show' = "scores".
example(combineRecomputedResults, echo = FALSE)
plotScoreDistribution(results = combined)

'scores.use' sets which original results to plot distributions for, and can
be multiple or NULL (default)
plotScoreDistribution(results = combined, show = "scores",

scores.use = 0)
plotScoreDistribution(results = combined, show = "scores",

scores.use = 1:2)

To color and group cells by non-final label and pruned calls,
use 'calls.use' and 'pruned.use'
plotScoreDistribution(results = combined, show = "scores",

calls.use = 1, pruned.use = 1)

To have plots output in a grid rather than as separate pages, provide,
a list of inputs for gridExtra::grid.arrange() to 'grids.vars'.
plotScoreDistribution(combined,

grid.vars = list(ncol = 1))

An empty list will use grid.arrange defaluts
plotScoreDistribution(combined,

grid.vars = list())

plotScoreHeatmap Plot a score heatmap

Description

Create a heatmap of the SingleR assignment scores across all cell-label combinations.

Usage

plotScoreHeatmap(
results,
cells.use = NULL,

plotScoreHeatmap 31

labels.use = NULL,
clusters = NULL,
show.labels = TRUE,
show.pruned = FALSE,
max.labels = 40,
normalize = TRUE,
cells.order = NULL,
order.by = c("labels", "clusters"),
scores.use = NULL,
calls.use = 0,
na.color = "gray30",
cluster_cols = FALSE,
annotation_col = NULL,
show_colnames = FALSE,
color = (grDevices::colorRampPalette(c("#D1147E", "white", "#00A44B")))(100),
silent = FALSE,
...,
grid.vars = list()

)

Arguments

results A DataFrame containing the output from SingleR, classifySingleR, combineCommonResults,
or combineRecomputedResults.

cells.use Integer or string vector specifying the single cells to show. If NULL, all cells are
presented.

labels.use String vector indicating what labels to show. If NULL, all labels available in the
target results are presented.

clusters String vector or factor containing cell cluster assignments, to be shown as an
annotation bar in the heatmap.

show.labels Logical indicating whether the chosen labels of cells should be shown as an
annotation bar.

show.pruned Logical indicating whether the pruning status of the cell labels, as defined by
pruneScores, should be shown as an annotation bar.

max.labels Integer scalar specifying the maximum number of labels to show.

normalize Logical specifying whether correlations should be normalized to lie in [0, 1].

cells.order Integer or String vector specifying how to order the cells/columns of the heatmap.
Regardless of cells.use, this input should be the the same length as the total
number of cells. Subordinate to cluster_cols.

order.by String providing the annotation to be used for cells/columns ordering. Can be
"labels" (default) or "clusters" (when provided). Subordinate to cells.order
and cluster_cols.

scores.use Integer scalar specifying which scores to use. This can refer to any column
index of results$orig.results to use scores from individual references of a
combined prediction (see ?combine-predictions), or to the top-level results
which is indicated by the value 0.
Alternatively, scores.use can be an integer vector containing multiple such
column indices (or zero). In such cases, multiple heatmaps will be created show-
ing multiple sets of scores.

32 plotScoreHeatmap

Default setting, scores.use=NULL, will create heatmaps for scores from both
the top-level results and the individual references.

calls.use Integer scalar specifying which labels to use, defaulting to those from the top-
level results which is indicated by the value 0. However, this can also refer
to any column index of results$orig.results to use labels from individual
references of a combined prediction (see ?combine-predictions).
Alternatively, an integer vector of the same length as scores.use, specifying
the labels to use in each heatmap generated by scores.use.

na.color String specifying the color for non-calculated scores of combined results.
annotation_col, cluster_cols, show_colnames, color, silent, ...

Additional parameters for heatmap control passed to pheatmap.

grid.vars A named list of extra variables to pass to grid.arrange, used when scores.use
is of length greater than 1. If NULL, the function will not arrange plots on a grid
and will instead output them as a list.

Details

This function creates a heatmap containing the SingleR initial assignment scores for each cell
(columns) to each reference label (rows). Users can then easily identify the high-scoring labels
associated with each cell and/or cluster of cells.

If show.labels=TRUE, an annotation bar will be added to the heatmap indicating labels assigned to
the cells. Note that scores shown in the heatmap are initial scores prior to the fine-tuning step, so
the reported labels may not match up to the visual maximum for each cell in the heatmap.

If max.labels is less than the total number of unique labels, only the top labels are shown in the
plot. Labels that were called most frequently are prioritized. Then remaining labels are selected
based on:

• General case: Labels with max z-scores after per-cell centering and scaling of the scores
matrix.

• Recomputed scores of combined predictions: Labels which were suggested most frequently
by individual references.

Value

One or more heatmaps of assignment scores, generated by pheatmap, are returned on the current
graphics device. Or a list of such heatmaps are output if scores.use is of length greater than 1,
and grid.vars is set to NULL.

Working with combined results

When results are the output of a combined prediction (see ?combine-predictions), scores.use
and calls.use are used to indicate which prediction’s scores or labels should be presented.

• scores.use sets which prediction’s scores to create a heatmap for.

• calls.use sets which prediction’s label (and pruning) calls to show as annotations above the
heatmap.

Values of these inputs can be:

• 0: the top-level "combined" scores or calls.

• Any positive integer: indicates the index of an individual prediction within results$orig.results.

plotScoreHeatmap 33

Tweaking the output

Additional arguments can be passed to pheatmap for further tweaking of the heatmap. Partic-
ularly useful parameters are show_colnames, which can be used to display cell/cluster names;
treeheight_row, which sets the width of the clustering tree; and annotation_col, which can
be used to add extra annotation layers. Clustering, pruning and label annotations are automatically
generated and appended to annotation_col when available.

Normalization of colors

If normalize=TRUE, scores will be linearly adjusted for each cell so that the smallest score is 0 and
the largest score is 1. This is followed by cubing of the adjusted scores to improve dynamic range
near 1. Visually, the color scheme is changed to a blue-green-yellow scale.

The adjustment is intended to inflate differences between scores within a given cell for easier vi-
sualization. This is because the scores are often systematically shifted between cells, making the
raw values difficult to directly compare. However, it may be somewhat misleading; fine-tuning may
appear to assign a cell to a label with much lower score whereas the actual scores are much closer.
It is for this reason that the color bar values are not shown as the absolute values of the score have
little meaning.

Also note that this transformation is done after the choice of the top max.labels labels.

Author(s)

Daniel Bunis, based on code by Dvir Aran.

See Also

SingleR, to generate scores.

pruneScores, to remove low-quality labels based on the scores.

pheatmap, for additional tweaks to the heatmap.

grid.arrange, for tweaks to the how heatmaps are arranged when multiple are output together.

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)
Grab the original identities of the cells as mock clusters
clusts <- g

Creating a heatmap with just the labels.
plotScoreHeatmap(pred)

Creating a heatmap with clusters also displayed.
plotScoreHeatmap(pred,

clusters=clusts)

Creating a heatmap with whether cells were pruned displayed.
plotScoreHeatmap(pred,

show.pruned = TRUE)

We can also turn off the normalization with Normalize = FALSE
plotScoreHeatmap(pred, clusters=clusts,

normalize = FALSE)

34 pruneScores

To only show certain labels, you can use labels.use or max.labels
plotScoreHeatmap(pred, clusters=clusts,

labels.use = c("A","B","D"))
plotScoreHeatmap(pred, clusters=clusts,

max.labels = 4)

We can pass extra tweaks the heatmap as well
plotScoreHeatmap(pred, clusters=clusts,

fontsize_row = 20)
plotScoreHeatmap(pred, clusters=clusts,

treeheight_row = 15)
plotScoreHeatmap(pred, clusters=clusts, cluster_col = TRUE,

cutree_cols = 5)

Multi-Reference Compatibility

example(combineRecomputedResults, echo = FALSE)
plotScoreHeatmap(combined)

'scores.use' sets which particular run's scores to show, and can be multiple
plotScoreHeatmap(combined,

scores.use = 1)
plotScoreHeatmap(combined,

scores.use = c(0,2))

'calls.use' adjusts which run's labels and pruning calls to display.
plotScoreHeatmap(combined,

calls.use = 1)

To have plots output in a grid rather than as separate pages, provide,
a list of inputs for gridExtra::grid.arrange() to 'grids.vars'.
plotScoreHeatmap(combined,

grid.vars = list(ncol = 1))

An empty list will use grid.arrange defaluts
plotScoreHeatmap(combined,

grid.vars = list())

pruneScores Prune out low-quality assignments

Description

Remove low-quality assignments based on the cell-label score matrix returned by classifySingleR.

Usage

pruneScores(
results,
nmads = 3,
min.diff.med = -Inf,
min.diff.next = 0,
get.thresholds = FALSE

)

pruneScores 35

Arguments

results A DataFrame containing the output generated by SingleR or classifySingleR.

nmads Numeric scalar specifying the number of MADs to use for defining low outliers
in the per-label distribution of delta values (i.e., difference from median).

min.diff.med Numeric scalar specifying the minimum acceptable delta for each cell.

min.diff.next Numeric scalar specifying the minimum difference between the best score and
the next best score in fine-tuning.

get.thresholds Logical scalar indicating whether the per-label thresholds on the deltas should
be returned.

Details

By itself, the SingleR algorithm will always assign a label to every cell. This occurs even if the cell’s
true label is not represented in the reference set of labels, resulting in assignment of an incorrect
label to that cell. The pruneScores function aims to mitigate this effect by removing poor-quality
assignments with “low” scores.

We compute a “delta” value for each cell, defined as the difference between the score for the as-
signed label and the and median score across all labels. If the delta is small, this indicates that
the cell matches all labels with the same confidence such that the assigned label is not particu-
larly meaningful. The aim is to discard low delta values caused by (i) ambiguous assignments with
closely related reference labels and (ii) incorrect assignments that match poorly to all reference
labels.

We use an outlier-based approach to obtain a minimum threshold for filtering “low” delta values.
For each (pre-fine-tuning) label, we obtain a distribution of deltas across all assigned cells. Cells
that are more than nmads below the median score for each label are ignored. This assumes that
most cells are correctly assigned to their true label and that cells of the same label have a unimodal
distribution of delta values.

Filtering on outliers is useful as it adapts to the spread and scale of delta values. For example,
references with many closely related cell types will naturally yield lower deltas. By comparison,
references with more distinct cell types would yield large deltas, even for cells that have no rep-
resentative type in the reference and are incorrectly assigned to the next-most-related label. The
outlier definition procedure adjusts naturally to these situations.

The default nmads is motivated by the fact that, for a normal distribution, 99 Smaller values for
nmads will increase the stringency of the pruning.

Value

A logical vector is returned by default, specifying which assignments in results should be ignored.

If get.thresholds=TRUE, a numeric vector is returned containing the per-label thresholds on the
deltas, as defined using the outlier-based approach with nmads.

Applying a hard filter on the deltas

If min.diff.med is specified, cells with deltas below this threshold are discarded. This is provided
as an alternative filtering approach if the assumptions of outlier detection are violated. For example,
if one label is consistently missassigned, the incorrect assignments would not be pruned. In such
cases, one could set a threshold with min.diff.med to forcibly remove low-scoring cells.

It is possible for the per-label delta distribution to be multimodal yet still correct, e.g., due to cells
belonging to subtypes nested within a main type label. This violates the unimodal assumption

36 pruneScores

mentioned above for the outlier detection. In such cases, it may be better to set nmads=Inf and rely
on min.diff.med for filtering instead.

Note that the deltas do not consider the effects of fine-tuning as scores are not comparable across
different fine-tuning steps. In situations involving a majority of labels with only subtle distinctions,
it is possible for the scores to be relatively similar but for the labels to be correctly assigned after
fine-tuning. While outlier detection will automatically adapt to smaller scores, this effect should be
considered if a threshold needs to be manually chosen for use in min.diff.med.

Filtering on fine-tuning scores

If fine-tuning was performed to generate results, we ignore any cell for which the fine-tuning
score is not more than min.diff.next greater than the next best score. This aims to only retain
labels for which there is no ambiguity in assignment, especially when some labels have similar
scores because they are closely related (and thus easily confused).

Typical values of min.diff.next woud lie between [0, 0.1]. That said, the min.diff.next cutoff
can be harmful in some applications involving highly related labels. From a user perspective, any
confusion between these labels may not be a problem as the assignment is broadly correct; however,
the best and next best scores will be very close and cause the labels to be unnecessarily discarded.

Author(s)

Aaron Lun and Daniel Bunis

See Also

classifySingleR, to generate results.

getDeltaFromMedian, to compute the per-cell deltas.

Examples

Running the SingleR() example.
example(SingleR, echo=FALSE)

summary(pruneScores(pred))
pruneScores(pred, get.thresholds=TRUE)

Less stringent:
summary(pruneScores(pred, min.diff.med=0))
summary(pruneScores(pred, nmads=5))

More stringent:
summary(pruneScores(pred, min.diff.med=0.1))
summary(pruneScores(pred, nmads=2))
summary(pruneScores(pred, min.diff.next=0.1))

SingleR 37

SingleR Annotate scRNA-seq data

Description

Returns the best annotation for each cell in a test dataset, given a labelled reference dataset in the
same feature space.

Usage

SingleR(
test,
ref,
labels,
method = c("single", "cluster"),
clusters = NULL,
genes = "de",
sd.thresh = 1,
de.method = "classic",
de.n = NULL,
de.args = list(),
aggr.ref = FALSE,
aggr.args = list(),
recompute = TRUE,
quantile = 0.8,
fine.tune = TRUE,
tune.thresh = 0.05,
prune = TRUE,
assay.type.test = "logcounts",
assay.type.ref = "logcounts",
check.missing = TRUE,
BNPARAM = KmknnParam(),
BPPARAM = SerialParam()

)

Arguments

test A numeric matrix of single-cell expression values where rows are genes and
columns are cells. Alternatively, a SummarizedExperiment object containing
such a matrix.

ref A numeric matrix of (usually log-transformed) expression values from a refer-
ence dataset, or a SummarizedExperiment object containing such a matrix; see
trainSingleR for details.
Alternatively, a list or List of SummarizedExperiment objects or numeric matri-
ces containing multiple references. Row names may be different across entries
but only the intersection will be used, see Details.

labels A character vector or factor of known labels for all samples in ref.
Alternatively, if ref is a list, labels should be a list of the same length. Each
element should contain a character vector or factor specifying the label for the
corresponding entry of ref.

38 SingleR

method String specifying whether annotation should be performed on single cells in
test, or whether they should be aggregated into cluster-level profiles prior to
annotation.

clusters A character vector or factor of cluster identities for each cell in test. Only used
if method="cluster".

genes, sd.thresh, de.method, de.n, de.args

Arguments controlling the choice of marker genes used for annotation, see trainSingleR.
aggr.ref, aggr.args

Arguments controlling the aggregation of the references prior to annotation, see
trainSingleR.

recompute Logical scalar indicating whether to set up indices for later recomputation of
scores, when ref contains multiple references from which the individual results
are to be combined. (See the difference between combineCommonResults and
combineRecomputedResults.)

quantile, fine.tune, tune.thresh, prune

Further arguments to pass to classifySingleR.
assay.type.test

An integer scalar or string specifying the assay of test containing the relevant
expression matrix, if test is a SummarizedExperiment object.

assay.type.ref An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object (or is a list that
contains one or more such objects).

check.missing Logical scalar indicating whether rows should be checked for missing values
(and if found, removed).

BNPARAM A BiocNeighborParam object specifying the algorithm to use for building near-
est neighbor indices.

BPPARAM A BiocParallelParam object specifying how parallelization should be performed,
if any.

Details

If method="single", this function is effectively just a convenient wrapper around trainSingleR
and classifySingleR.

If method="cluster", per-cell profiles are summed to obtain per-cluster profiles and annotation is
performed on these clusters.

The function will automatically restrict the analysis to the intersection of the genes available in both
ref and test. If this intersection is empty (e.g., because the two datasets use different annotation
in their row names), an error will be raised.

ref can contain both single-cell or bulk data, but in the case of the former, read the Note in
?trainSingleR.

Value

A DataFrame is returned containing the annotation statistics for each cell or cluster (row). This is
identical to the output of classifySingleR.

Author(s)

Aaron Lun, based on code by Dvir Aran.

SingleR 39

References

Aran D, Looney AP, Liu L et al. (2019). Reference-based analysis of lung single-cell sequencing
reveals a transitional profibrotic macrophage. Nat. Immunology 20, 163–172.

Examples

##############################
Mocking up training data
##############################

Ngroups <- 5
Ngenes <- 1000
means <- matrix(rnorm(Ngenes*Ngroups), nrow=Ngenes)
means[1:900,] <- 0
colnames(means) <- LETTERS[1:5]

g <- rep(LETTERS[1:5], each=4)
ref <- SummarizedExperiment(

list(counts=matrix(rpois(1000*length(g),
lambda=10*2^means[,g]), ncol=length(g))),

colData=DataFrame(label=g)
)
rownames(ref) <- sprintf("GENE_%s", seq_len(nrow(ref)))

ref <- scater::logNormCounts(ref)
trained <- trainSingleR(ref, ref$label)

###############################
Mocking up some test data
###############################

N <- 100
g <- sample(LETTERS[1:5], N, replace=TRUE)
test <- SummarizedExperiment(

list(counts=matrix(rpois(1000*N, lambda=2^means[,g]), ncol=N)),
colData=DataFrame(cluster=g)

)

rownames(test) <- sprintf("GENE_%s", seq_len(nrow(test)))
test <- scater::logNormCounts(test)

###############################
Performing classification
###############################

pred <- SingleR(test, ref, labels=ref$label)
table(predicted=pred$labels, truth=g)

pred2 <- SingleR(test, ref, labels=ref$label,
method="cluster", clusters=test$cluster)

table(predicted=pred2$labels, truth=rownames(pred2))

40 trainSingleR

trainSingleR Train the SingleR classifier

Description

Train the SingleR classifier on one or more reference datasets with known labels.

Usage

trainSingleR(
ref,
labels,
genes = "de",
sd.thresh = 1,
de.method = c("classic", "wilcox", "t"),
de.n = NULL,
de.args = list(),
aggr.ref = FALSE,
aggr.args = list(),
recompute = TRUE,
assay.type = "logcounts",
check.missing = TRUE,
BNPARAM = KmknnParam()

)

Arguments

ref A numeric matrix of expression values where rows are genes and columns are
reference samples (individual cells or bulk samples). Each row should be named
with the gene name. In general, the expression values are expected to be log-
transformed, see Details.
Alternatively, a SummarizedExperiment object containing such a matrix.
Alternatively, a list or List of SummarizedExperiment objects or numeric matri-
ces containing multiple references, in which case the row names are expected to
be the same across all objects.

labels A character vector or factor of known labels for all samples in ref.
Alternatively, if ref is a list, labels should be a list of the same length. Each
element should contain a character vector or factor specifying the label for the
corresponding entry of ref.

genes A string specifying the feature selection method to be used, see Details.
Alternatively, if ref is not a list, genes can be either:

• A list of lists of character vectors containing DE genes between pairs of
labels.

• A list of character vectors containing marker genes for each label.

If ref is a list, genes can be a list of lists of (lists of) character vectors, i.e.,
either of the two above choices. Each element of the outer-most list should
contain markers for labels in the corresponding entry of ref.

sd.thresh A numeric scalar specifying the minimum threshold on the standard deviation
per gene. Only used when genes="sd".

trainSingleR 41

de.method String specifying how DE genes should be detected between pairs of labels.
Defaults to "classic", which sorts genes by the log-fold changes and takes
the top de.n. Setting to "wilcox" or "t" will use Wilcoxon ranked sum test
or Welch t-test between labels, respectively, and take the top de.n upregulated
genes per comparison.

de.n An integer scalar specifying the number of DE genes to use when genes="de".
If de.method="classic", defaults to 500 * (2/3) ^ log2(N) where N is the
number of unique labels. Otherwise, defaults to 10.

de.args Named list of additional arguments to pass to pairwiseTTests or pairwiseWilcox
when de.method="wilcox" or "t".

aggr.ref Logical scalar indicating whether references should be aggregated to pseudo-
bulk samples for speed, see aggregateReference.

aggr.args Further arguments to pass to aggregateReference when aggr.ref=TRUE.

recompute Logical scalar indicating whether to set up indices for later recomputation of
scores, when ref contains multiple references from which the individual results
are to be combined. (See the difference between combineCommonResults and
combineRecomputedResults.)

assay.type An integer scalar or string specifying the assay of ref containing the relevant
expression matrix, if ref is a SummarizedExperiment object (or is a list that
contains one or more such objects).

check.missing Logical scalar indicating whether rows should be checked for missing values
(and if found, removed).

BNPARAM A BiocNeighborParam object specifying the algorithm to use for building near-
est neighbor indices.

Details

This function uses a training data set to select interesting features and construct nearest neighbor
indices in rank space. The resulting objects can be re-used across multiple classification steps with
different test data sets via classifySingleR. This improves efficiency by avoiding unnecessary
repetition of steps during the downstream analysis.

Several options are available for feature selection:

• genes="de" identifies genes that are differentially expressed between labels. This is done
by identifying the median expression within each label, and computing differences between
medians for each pair of labels. For each label, the top de.n genes with the largest differences
compared to another label are chosen as markers to distinguish the two labels. The set of all
features is defined as the union of markers from all pairwise comparisons.

• genes="sd" identifies genes that are highly variable across labels. This is done by identifying
the median expression within each label, and computing the standard deviation in the medians
across all labels. The set of all features is defined as those genes with standard deviations
above sd.thresh.

• genes="all" will not perform any feature selection.

If genes="de" or "sd", the expression values are expected to be log-transformed and normalized.

Value

For a single reference, a List is returned containing:

42 trainSingleR

common.genes: A character vector of all genes that were chosen by the designated feature selection
method.

nn.indices: A List of BiocNeighborIndex objects containing pre-constructed neighbor search in-
dices.

original.exprs: A List of numeric matrices where each matrix contains all cells for a particular
label.

search: A List of additional information on the feature selection, for use by classifySingleR.
This includes mode, a string containing the selection method; args, method-specific arguments
that can be re-used during classification; and extras, method-specific structures that can be
re-used during classification.

For multiple references, a List of Lists is returned where each internal List corresponds to a refer-
ence in ref and has the same structure as described above.

Custom feature specification

Rather than relying on the in-built feature selection, users can pass in their own features of interest
to genes. The function expects a named list of named lists of character vectors, with each vector
containing the DE genes between a pair of labels. For example:

genes <- list(
A = list(A = character(0), B = "GENE_1", C = c("GENE_2", "GENE_3")),
B = list(A = "GENE_100", B = character(0), C = "GENE_200"),
C = list(A = c("GENE_4", "GENE_5"), B = "GENE_5", C = character(0))

)

If we consider the entry genesAB, this contains marker genes for label "A" against label "B".
That is, these genes are upregulated in "A" compared to "B". The outer list should have one list per
label, and each inner list should have one character vector per label. (Obviously, a label cannot have
markers against itself, so this is just set to character(0).)

Alternatively, genes can be a named list of character vectors containing per-label markers. For
example:

genes <- list(
A = c("GENE_1", "GENE_2", "GENE_3"),
B = c("GENE_100", "GENE_200"),
C = c("GENE_4", "GENE_5")

)

The entry genes$A represent the genes that are upregulated in A compared to some or all other
labels. This allows the function to handle pre-defined marker lists for specific cell populations.
However, it obviously captures less information than marker sets for the pairwise comparisons.

If genes explicitly contains gene identities (as character vectors), ref can be the raw counts or any
monotonic transformation thereof.

Dealing with multiple references

The default SingleR policy for dealing with multiple references is to perform the classification for
each reference separately and combine the results (see ?combine-predictions for an explana-
tion). To this end, if ref is a list with multiple references, marker genes are identified separately
within each reference when genes="de" or "sd". Rank calculation and index construction is then
performed within each reference separately.

trainSingleR 43

Alternatively, genes can still be used to explicitly specify marker genes for each label in each of
multiple references. This is achieved by passing a list of lists to genes, where each inner list corre-
sponds to a reference in ref and can be of any format described in “Custom feature specification”.
Thus, it is possible for genes to be - wait for it - a list (per reference) of lists (per label) of lists (per
label) of character vectors.

If recompute=TRUE, the output is exactly equivalent to running trainSingleR on each reference
separately. If recompute=FALSE, trainSingleR is also run each reference but the difference is that
the final common set of genes consists of the union of common genes across all references. This is
necessary to ensure that correlations are computed from the same set of genes across reference and
are thus reasonably comparable in combineCommonResults.

Note on single-cell references

The default marker selection is based on log-fold changes between the per-label medians and is
very much designed with bulk references in mind. It may not be effective for single-cell reference
data where it is not uncommon to have more than 50% zero counts for a given gene such that the
median is also zero for each group. Users are recommended to either set de.method to another DE
ranking method, or detect markers externally and pass a list of markers to genes (see Examples).

In addition, it is generally unnecessary to have single-cell resolution on the reference profiles. We
can instead set aggr.ref=TRUE to aggregate per-cell references into a set of pseudo-bulk profiles
using aggregateReference. This improves classification speed while using vector quantization
to preserve within-label heterogeneity and mitigate the loss of information. Note that any aggre-
gation is done after marker gene detection; this ensures that the relevant tests can appropriately
penalize within-label variation. Users should also be sure to set the seed as the aggregation involves
randomization.

Author(s)

Aaron Lun, based on the original SingleR code by Dvir Aran.

See Also

classifySingleR, where the output of this function gets used.

combineCommonResults and combineRecomputedResults, to combine results from multiple ref-
erences.

Examples

Making up some data for a quick demonstration.
ref <- .mockRefData()

Normalizing and log-transforming for automated marker detection.
ref <- scater::logNormCounts(ref)

trained <- trainSingleR(ref, ref$label)
trained
trained$nn.indices
length(trained$common.genes)

Alternatively, computing and supplying a set of label-specific markers.
by.t <- scran::pairwiseTTests(assay(ref, 2), ref$label, direction="up")
markers <- scran::getTopMarkers(by.t[[1]], by.t[[2]], n=10)
trained <- trainSingleR(ref, ref$label, genes=markers)
length(trained$common.genes)

44 trainSingleR

Index

.mockRefData, 2

.mockTestData (.mockRefData), 2

aggregateReference, 3, 41, 43

BiocNeighborIndex, 42
BiocNeighborParam, 13, 38, 41
BiocParallelParam, 4, 7, 13, 38
BiocSingularParam, 4
BlueprintEncodeData, 5

classifySingleR, 4, 6, 8, 11–14, 17, 27, 31,
34–36, 38, 41–43

colData, 3, 5, 6, 15, 16, 18, 19, 21–24, 26
combine-predictions, 10
combineCommonResults, 8, 9, 11, 11, 13, 14,

27, 31, 38, 41, 43
combineRecomputedResults, 8, 11, 12, 12,

27, 31, 38, 41, 43

DatabaseImmuneCellExpressionData, 15
DataFrame, 8, 11–14, 17, 27, 31, 35, 38

getDeltaFromMedian, 17, 36
ggplot, 28
grid.arrange, 28, 29, 32, 33

HumanPrimaryCellAtlasData, 18

ImmGenData, 10, 19

kmeans, 4

List, 7, 13, 37, 40, 41

matchReferences, 11, 20
metadata, 8, 12
MonacoImmuneData, 21
MouseRNAseqData, 23

NovershternHematopoieticData, 24

pairwiseTTests, 41
pairwiseWilcox, 41
pheatmap, 32, 33
plotScoreDistribution, 27

plotScoreHeatmap, 30
pruneScores, 8, 9, 17, 28, 29, 31, 33, 34

runPCA, 4

SingleR, 4, 11, 12, 14, 17, 20, 21, 27, 29–33,
35, 37

SummarizedExperiment, 2–4, 6, 7, 13, 16,
18–20, 22, 24, 26, 37, 38, 40, 41

trainSingleR, 4, 7–9, 13, 37, 38, 40

45

	.mockRefData
	aggregateReference
	BlueprintEncodeData
	classifySingleR
	combine-predictions
	combineCommonResults
	combineRecomputedResults
	DatabaseImmuneCellExpressionData
	getDeltaFromMedian
	HumanPrimaryCellAtlasData
	ImmGenData
	matchReferences
	MonacoImmuneData
	MouseRNAseqData
	NovershternHematopoieticData
	plotScoreDistribution
	plotScoreHeatmap
	pruneScores
	SingleR
	trainSingleR
	Index

