
Package ‘RGMQL’
October 17, 2020

Type Package

Title GenoMetric Query Language for R/Bioconductor

Version 1.8.0

Author Simone Pallotta, Marco Masseroli

Maintainer Simone Pallotta <simonepallotta@hotmail.com>

Description This package brings the GenoMetric Query Language (GMQL)
functionalities into the R environment. GMQL is a high-level, declarative
language to manage heterogeneous genomic datasets for biomedical purposes,
using simple queries to process genomic regions and their metadata and properties.
GMQL adopts algorithms efficiently designed for big data using cloud-computing
technologies (like Apache Hadoop and Spark) allowing GMQL to run on modern
infrastructures, in order to achieve scalability and high performance.
It allows to create, manipulate and extract genomic data from different
data sources both locally and remotely. Our RGMQL functions allow complex
queries and processing leveraging on the R idiomatic paradigm.
The RGMQL package also provides a rich set of ancillary classes that allow
sophisticated input/output management and sorting, such as:
ASC, DESC, BAG, MIN, MAX, SUM, AVG, MEDIAN, STD, Q1, Q2, Q3 (and many others).
Note that many RGMQL functions are not directly executed in R environment,
but are deferred until real execution is issued.

License Artistic-2.0

URL http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

Imports httr, rJava, GenomicRanges, rtracklayer, data.table, utils,
plyr, xml2, methods, S4Vectors, dplyr, stats, glue,
BiocGenerics

Depends R(>= 3.4.2), RGMQLlib

VignetteBuilder knitr

Suggests BiocStyle, knitr, rmarkdown

biocViews Software, Infrastructure, DataImport, Network,
ImmunoOncology, SingleCell

1

http://www.bioinformatics.deib.polimi.it/genomic_computing/GMQL/

2 R topics documented:

Collate 'AllClasses.R' 'AllGenerics.R' 'GMQLtoGRanges.R'
'GRangesToGMQL.R' 'S3Aggregates.R' 'S3Cover-Param.R'
'S3Distal.R' 'S3Operator.R' 'Utils.R' 'evaluation-functions.R'
'filter-extract-function.R' 'gmql_cover.R' 'gmql_difference.R'
'gmql_extend.R' 'gmql_group.R' 'gmql_init.R' 'gmql_join.R'
'gmql_map.R' 'gmql_materialize.R' 'gmql_merge.R' 'gmql_order.R'
'gmql_project.R' 'gmql_read.R' 'gmql_select.R' 'gmql_union.R'
'onLoad.R' 'ordering-functions.R' 'web-services.R'

git_url https://git.bioconductor.org/packages/RGMQL

git_branch RELEASE_3_11

git_last_commit 734d3e1

git_last_commit_date 2020-04-27

Date/Publication 2020-10-16

R topics documented:
aggregate . 3
AGGREGATES-Object . 4
arrange . 6
collect . 8
compile_query . 9
cover . 10
Cover-Param . 12
delete_dataset . 13
DISTAL-Object . 14
download_dataset . 16
Evaluation-Function . 17
execute . 17
export_gmql . 18
extend . 19
filter . 20
filter_and_extract . 22
group_by . 23
import_gmql . 25
init_gmql . 26
login_gmql . 27
logout_gmql . 28
log_job . 29
map . 30
merge . 31
OPERATOR-Object . 33
Ordering-Functions . 34
read_gmql . 35
register_gmql . 37
remote_processing . 38
run_query . 38
sample_metadata . 40
sample_region . 40
save_query . 41
select . 42

aggregate 3

semijoin . 44
setdiff . 45
show_datasets_list . 46
show_jobs_list . 47
show_queries_list . 48
show_samples_list . 48
show_schema . 49
stop_gmql . 50
stop_job . 51
take . 52
union . 53
upload_dataset . 54

Index 56

aggregate Method aggregate

Description

Wrapper to GMQL MERGE operator

It builds a dataset consisting of a single sample having as many regions as the number of regions
of all the input dataset samples and as many metadata as the union of the ’attribute-value’ tuples
of the input samples. If groupBy is specified, the samples are then partitioned in groups, each with
a distinct value of the grouping metadata attributes. The operation is separately applied to each
group, yielding one sample in the result for each group. Samples whose metadata are not present in
the grouping metadata parameter are disregarded.

Usage

S4 method for signature 'GMQLDataset'
aggregate(x, groupBy = conds())

Arguments

x GMQLDataset class object

groupBy condition_evaluation function to support methods with groupBy or JoinBy
input paramter

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named "exp"
using CustomParser

init_gmql()

4 AGGREGATES-Object

test_path <- system.file("example", "DATASET", package = "RGMQL")
exp = read_gmql(test_path)

This statement creates a dataset called merged which contains one
sample for each antibody_target and cell value found within the metadata
of the exp dataset sample; each created sample contains all regions
from all 'exp' samples with a specific value for their
antibody_target and cell metadata attributes.

merged = aggregate(exp, conds(c("antibody_target", "cell")))

AGGREGATES-Object AGGREGATES object class constructor

Description

This class constructor is used to create instances of AGGREGATES object, to be used in GMQL
functions that require aggregate on value.

Usage

SUM(value)

COUNT()

COUNTSAMP()

MIN(value)

MAX(value)

AVG(value)

MEDIAN(value)

STD(value)

BAG(value)

BAGD(value)

Q1(value)

Q2(value)

Q3(value)

Arguments

value string identifying name of metadata or region attribute

AGGREGATES-Object 5

Details

• SUM: It prepares input parameter to be passed to the library function sum, performing all the
type conversions needed

• COUNT: It prepares input parameter to be passed to the library function count, performing all
the type conversions needed

• COUNTSAMP: It prepares input parameter to be passed to the library function countsamp,
performing all the type conversions needed. It is used only with group_by functions

• MIN: It prepares input parameter to be passed to the library function minimum, performing
all the type conversions needed

• MAX: It prepares input parameter to be passed to the library function maximum, performing
all the type conversions needed

• AVG: It prepares input parameter to be passed to the library function mean, performing all the
type conversions needed

• MEDIAN: It prepares input parameter to be passed to the library function median, performing
all the type conversions needed

• STD: It prepares input parameter to be passed to the library function standard deviation, per-
forming all the type conversions needed

• BAG: It prepares input parameter to be passed to the library function bag; this function creates
comma-separated strings of attribute values, performing all the type conversions needed

• BAGD: It prepares input parameter to be passed to the library function bagd; this function cre-
ates comma-separated strings of distinct attribute values, performing all the type conversions
needed

• Q1: It prepares input parameter to be passed to the library function fist quartile, performing
all the type conversions needed

• Q2: It prepares input parameter to be passed to the library function second quartile, performing
all the type conversions needed

• Q3: It prepares input parameter to be passed to the library function third quartile, performing
all the type conversions needed

Value

Aggregate object

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "exp" using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
exp = read_gmql(test_path)

This statement copies all samples of exp dataset into res dataset, and
then calculates new metadata attribute sum_score for each of them:
sum_score is the sum of score values of the sample regions.

6 arrange

res = extend(exp, sum_score = SUM("score"))

This statement copies all samples of exp dataset into res dataset,
and then calculates new metadata attribute min_pvalue for each of them:
min_pvalue is the minimum pvalue of the sample regions.

res = extend(exp, min_pvalue = MIN("pvalue"))

This statement copies all samples of exp dataset into res dataset,
and then calculates new metadata attribute max_score for each of them:
max_score is the maximum score of the sample regions.

res = extend(exp, max_score = MAX("score"))

The following cover operation produces output regions where at least 2
and at most 3 regions of exp dataset overlap, having as resulting region
attribute the average signal of the overlapping regions;
the result has one sample for each input cell value.

res = cover(exp, 2, 3, groupBy = conds("cell"), avg_signal = AVG("signal"))

This statement copies all samples of 'exp' dataset into 'out' dataset,
and then for each of them it adds another metadata attribute, allScore,
which is the aggregation comma-separated list of all the values
that the region attribute score takes in the sample.

out = extend(exp, allScore = BAG("score"))

This statement counts the regions in each sample and stores their number
as value of the new metadata RegionCount attribute of the sample.

out = extend(exp, RegionCount = COUNT())

This statement copies all samples of exp dataset into res dataset,
and then calculates new metadata attribute std_score for each of them:
std_score is the standard deviation of the score values of the sample
regions.

res = extend(exp, std_score = STD("score"))

This statement copies all samples of exp dataset into res dataset,
and then calculates new metadata attribute m_score for each of them:
m_score is the median score of the sample regions.

res = extend(exp, m_score = MEDIAN("score"))

arrange Method arrange

Description

Wrapper to GMQL ORDER operator

arrange 7

It is used to order either samples or sample regions or both, according to a set of metadata and/or
region attributes. Order can be specified as ascending / descending for every attribute. The number
of samples and their regions remain the same (unless fetching options are specified), as well as their
attributes, but a new ordering metadata and/or region attribute is added. Sorted samples or regions
have a new attribute "_order", added to their metadata, or "order" added to their regions, or to both
of them as specified in input.

Usage

S4 method for signature 'GMQLDataset'
arrange(.data, metadata_ordering = NULL,
regions_ordering = NULL, fetch_opt = "", num_fetch = 0L,
reg_fetch_opt = "", reg_num_fetch = 0L)

Arguments

.data GMQLDataset class object
metadata_ordering

list of ordering functions containing name of metadata attribute. The functions
available are: ASC, DESC. If NULL, fetch_opt and num_fetch are not considered

regions_ordering

list of ordering functions containing name of region attribute. The functions
available are: ASC, DESC. If NULL, reg_fetch_opt and reg_num_fetch are not
considered

fetch_opt string indicating the option used to fetch the first k samples; it can assume the
values:

• mtop: it fetches the first k samples
• mtopp: it fetches the first k percentage of samples.
• mtopg: it fetches the first k samples in each group.

if NULL, num_fetch is not considered

num_fetch integer value identifying the number of samples to fetch; by default it is 0, that
means all samples are fetched

reg_fetch_opt string indicating the option used to fetch the first k regions; it can assume the
values:

• rtop: it fetches the first k regions.
• rtopp: it fetches the first k percentage of regions.
• rtopg: it fetches the first k regions in each group.

if NULL, reg_num_fetch is not considered

reg_num_fetch integer value identifying the number of regions to fetch; by default it is 0, that
means all regions are fetched

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines

8 collect

the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named
"data" using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data = read_gmql(test_path)

The following statement orders the samples according to the Region_Count
metadata attribute and takes the two samples that have the highest count.

o = arrange(data, list(ASC("Region_Count")), fetch_opt = "mtop",
num_fetch = 2)

collect Method collect

Description

Wrapper to GMQL MATERIALIZE operator

It saves the content of a dataset that contains samples metadata and regions. It is normally used to
persist the content of any dataset generated during a GMQL query. Any dataset can be materialized,
but the operation can be time-consuming. For best performance, materialize the relevant data only.

Usage

S4 method for signature 'GMQLDataset'
collect(x, dir_out = getwd(), name = "ds1")

Arguments

x GMQLDataset class object

dir_out destination folder path. By default it is the current working directory of the R
process

name name of the result dataset. By default it is the string "ds1"

Details

An error occures if the directory already exist at the destination folder path

Value

None

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named
"data" using CustomParser

compile_query 9

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data = read_gmql(test_path)

The following statement materializes the dataset 'data', previoulsy read,
at the specific destination test_path into local folder "ds1" opportunely
created

collect(data, dir_out = test_path)

compile_query Compile GMQL query

Description

It compiles a GMQL query taken from file or inserted as text string, using the proper GMQL web
service available on a remote server

Usage

compile_query(url, query)

compile_query_fromfile(url, filePath)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

query string text of a GMQL query

filePath string path of txt file containing a GMQL query

Value

None

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

This statement gets the query as text string and runs the compile
web service

compile_query(remote_url, "DATASET = SELECT() Example_Dataset_1;
MATERIALIZE DATASET INTO RESULT_DS;")

This statement defines the path to the file "query1.txt" in the

10 cover

subdirectory "example" of the package "RGMQL" and run the compile
web service

test_path <- system.file("example", package = "RGMQL")
test_query <- file.path(test_path, "query1.txt")
compile_query_fromfile(remote_url, test_query)

Logout from GMQL REST services suite

logout_gmql(remote_url)

cover Method cover

Description

Wrapper to GMQL COVER operator

It takes as input a dataset containing one or more samples and returns another dataset (with a sin-
gle sample, if no groupBy option is specified) by “collapsing” the input dataset samples and their
regions according to certain rules specified by the input parameters. The attributes of the output
genomic regions are only the region coordinates, and Jaccard indexes (JaccardIntersect and Jac-
cardResult). Jaccard Indexes are standard measures of similarity of the contributing regions, added
as default region attributes. The JaccardIntersect index is calculated as the ratio between the lengths
of the intersection and of the union of the contributing regions; the JaccardResult index is calculated
as the ratio between the lengths of the result and the union of the contributing regions. If aggregate
functions are specified, a new region attribute is added for each aggregate function specified. Out-
put metadata are the union of the input ones. If groupBy clause is specified, the input samples are
partitioned in groups, each with distinct values of the grouping metadata attributes, and the cover
operation is separately applied to each group, yielding to one sample in the result for each group.
Input samples that do not satisfy the groupBy condition are disregarded.

Usage

cover(.data, ...)

S4 method for signature 'GMQLDataset'
cover(.data, min_acc, max_acc, groupBy = conds(),
variation = "cover", ...)

Arguments

.data GMQLDataset class object

... a series of expressions separated by comma in the form key = aggregate. The
aggregate is an object of class AGGREGATES. The aggregate functions avail-
able are: SUM, COUNT, MIN, MAX, AVG, MEDIAN, STD, BAG, BAGD, Q1, Q2, Q3. Every
aggregate accepts a string value, except for COUNT, which does not have any
value. Argument of ’aggregate function’ must exist in schema, i.e. among re-
gion attributes. Two styles are allowed:

• list of key-value pairs: e.g. sum = SUM("pvalue")
• list of values: e.g. SUM("pvalue")

cover 11

"mixed style" is not allowed

min_acc minimum number of overlapping regions to be considered during execution. It
is an integer number, declared also as string. minAcc accepts also:

• PARAMETER class object: ALL, that represents the number of samples in
the input dataset

• an expression built using PARAMETER object: (ALL() + N) / K or ALL()
/ K, with N and K integer values

max_acc maximum number of overlapping regions to be considered during execution. It
is an integer number, declared also as string. maxAcc accept also:

• PARAMETER class object: ALL, that represents the number of samples in
the input dataset

• PARAMETER class object: ANY, that acts as a wildcard, considering any
amount of overlapping regions.

• an expression built using PARAMETER object: (ALL() + N) / K or ALL()
/ K, with N and K integer values

groupBy conds function to support methods with groupBy or JoinBy input parameter

variation string identifying the cover GMQL operator variation. The admissible strings
are:

• FLAT: It returns the regions that start from the first end and stop at the last
end of the regions which would contribute to each region of the cover.

• SUMMIT: It returns regions that start from a position where the number
of intersecting regions is not increasing afterwards and stop at a position
where either the number of intersecting regions decreases, or it violates the
max accumulation index.

• HISTOGRAM: It returns the non-overlapping regions contributing to the
cover, each with its accumulation index value, which is assigned to the
AccIndex region attribute.

• COVER: default value.

It can be all caps or lowercase

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named "exp"
using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
exp = read_gmql(test_path)

The following statement produces an output dataset with a single output
sample. The COVER operation considers all areas defined by a minimum
of two overlapping regions in the input samples, up to any amount of
overlapping regions.

12 Cover-Param

res = cover(exp, 2, ANY())

The following GMQL statement computes the result grouping the input
exp samples by the values of their cell metadata attribute,
thus one output res sample is generated for each cell value;
output regions are produced where at least 2 and at most 3 regions
of grouped exp samples overlap, setting as attributes of the resulting
regions the minimum pvalue of the overlapping regions (min_pvalue)
and their Jaccard indexes (JaccardIntersect and JaccardResult).

res = cover(exp, 2, 3, groupBy = conds("cell"), min_pValue = MIN("pvalue"))

Cover-Param PARAM object class constructor

Description

This class constructor is used to create instances of PARAM object to be used in GMQL cover
method

Usage

ALL()

ANY()

Details

• ALL: It represents the number of samples in the input dataset.

• ANY: It represents any amount of overlapping regions to be considered.

Value

Param object

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the file "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named "exp"
using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
exp = read_gmql(test_path)

The following statement produces an output dataset with a single
output sample. The COVER operation considers all areas defined by
a minimum of two overlapping regions in the input samples,

delete_dataset 13

up to maximum amount of overlapping regions equal to the number
of input samples.

res = cover(exp, 2, ALL())

The following statement produces an output dataset with a single
output sample. The COVER operation considers all areas defined by
a minimum of two overlapping regions in the input samples,
up to any amount of overlapping regions.

res = cover(exp, 2, ANY())

The following statement produces an output dataset with a single
output sample. The COVER operation considers all areas defined by
minimum of overlapping regions in the input samples equal to half of
the number of input samples, up to any amount of overlapping regions.

res = cover(exp, ALL()/2, ANY())

delete_dataset Delete dataset

Description

It deletes single private dataset specified by name from remote repository using the proper GMQL
web service available on a remote server

Usage

delete_dataset(url, datasetName)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

datasetName string name of dataset to delete

Details

If no error occurs, it prints "Deleted Dataset", otherwise a specific error is printed

Value

None

Examples

Not run:

This dataset does not exist

remote_url <- "http://www.gmql.eu/gmql-rest/"

14 DISTAL-Object

login_gmql(remote_url)
delete_dataset(remote_url, "test1_20170604_180908_RESULT_DS")

End(Not run)

DISTAL-Object DISTAL object class constructor

Description

This class constructor is used to create instances of DISTAL object to be used in GMQL JOIN opera-
tions (RGMQL merge functions) that use genometric predicate parameter requiring distal condition
on value

Usage

DL(value)

DG(value)

DLE(value)

DGE(value)

MD(value)

UP()

DOWN()

Arguments

value string identifying distance between genomic regions in base pair

Details

• DL: It denotes the less distance clause, which selects all the regions of a joined experiment
dataset sample such that their distance from the anchor region of the joined reference dataset
sample is less than ’value’ bases.

• DLE: It denotes the less equal distance clause, which selects all the regions of a joined exper-
iment dataset sample such that their distance from the anchor region of the joined reference
dataset sample is less than, or equal to, ’value’ bases.

• DG: It denotes the great distance clause, which selects all the regions of a joined experiment
dataset sample such that their distance from the anchor region of the joined reference dataset
sample is greater than ’value’ bases.

• DGE: It denotes the great equal distance clause, which selects all the regions of a joined ex-
periment dataset sample such that their distance from the anchor region of the joined reference
dataset sample is greater than, or equal to, ’value’ bases.

DISTAL-Object 15

• MD: It denotes the minimum distance clause, which selects the first ’value’ regions of the
joined experiment at minimial distance from the anchor region of the joined reference dataset
sample.

• UP: It denotes the upstream direction of the genome. It makes predicates to be hold on the
upstream of the regions of the joined reference dataset sample. UP is true when region of
the joined experiment dataset sample is in the upstream genome of the anchor region of the
joined reference dataset sample. When this clause is not present, distal conditions apply to
both directions of the genome.

• DOWN: It denotes the downstream direction of the genome. It makes predicates to be hold
on the downstream of the regions of the joined reference dataset sample. DOWN is true
when region of the joined experiment dataset sample is in the downstream genome of the
anchor region of the joined reference dataset sample. When this clause is not present, distal
conditions apply to both directions of the genome.

Value

Distal object

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folders "DATASET" and "DATASET_GDM" in the subdirectory
"example" of the package "RGMQL", and opens such folders as a GMQL
datasets named "TSS" and "HM", respectively, using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
TSS = read_gmql(test_path)
HM = read_gmql(test_path2)

Given a dataset HM and one called TSS with a sample including
Transcription Start Site annotations, this statement searches for those
regions of HM that are at a minimal distance from a transcription
start site (TSS) and takes the first/closest one for each TSS, provided
that such distance is lesser than 1200 bases and joined TSS and HM
samples are obtained from the same provider (joinby clause).

join_data = merge(TSS, HM,
genometric_predicate = list(MD(1), DL(1200)), conds("provider"),
region_output = "RIGHT")

Given a dataset HM and one called TSS with a sample including
Transcription Start Site annotations, this statement searches for those
regions of HM that are downstream and at a minimal distance from a
transcription start site (TSS) and takes the first/closest one for each
TSS, provided that such distance is greater than 12K bases and joined
TSS and HM samples are obtained from the same provider (joinby clause).

join_data = merge(TSS, HM,
genometric_predicate = list(MD(1), DGE(12000), DOWN()),
conds("provider"), region_output = "RIGHT")

16 download_dataset

download_dataset Download Dataset

Description

It donwloads private dataset as zip file from remote repository to local path, or donwloads and saves
it into R environment as GRangesList, using the proper GMQL web service available on a remote
server

Usage

download_dataset(url, datasetName, path = getwd())

download_as_GRangesList(url, datasetName)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

datasetName string name of dataset to download

path string local path folder where to store dataset, by default it is R working directory

Details

If error occurs, a specific error is printed

Value

None

GRangesList containing all GMQL samples in dataset

Examples

Download dataset in R working directory
In this case we try to download a dataset of the user
(public datasets from remote repository cannot be downloaded)

Not run:

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)
download_dataset(remote_url, "Example_Dataset_1", path = getwd())

Create GRangesList from user dataset Example_Dataset1 got
from repository

download_as_GRangesList(remote_url, "Example_Dataset_1")

End(Not run)

Evaluation-Function 17

Evaluation-Function Condition evaluation functions

Description

This function is used to support joinBy and/or groupBy function parameter.

Usage

conds(default = c(""), full = c(""), exact = c(""))

Arguments

default concatenation of string identifying a name of metadata attribute to be evaluated.
It defines a DEFAULT evaluation of the input values. DEFAULT evaluation: the
two attributes match if both end with value.

full concatenation of string identifying a name of metadata attribute to be evaluated.
It defines a FULL (FULLNAME) evaluation of the input values. FULL evalu-
ation: two attributes match if they both end with value and, if they have further
prefixes, the two prefix sequences are identical.

exact concatenation of string identifying a name of metadata attribute to be evaluated.
It defines a EXACT evaluation of the input values. EXACT evaluation: only
attributes exactly as value match; no further prefixes are allowed.

Value

list of 2-D array containing method of evaluation and metadata attribute name

execute GMQL Function: EXECUTE

Description

It executes GMQL query. The function works only after invoking at least one collect

Usage

execute()

Value

None

18 export_gmql

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "data"

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data = read_gmql(test_path)

The following statement materializes the dataset "data", previoulsy read,
at the specific destination test_path into local folder "ds1" opportunely
created

collect(data, dir_out = test_path)

This statement executes GMQL query.
Not run:

execute()

End(Not run)

export_gmql Create GMQL dataset from GRangesList

Description

It creates GMQL dataset from GRangesList. All samples are in GDM (tab-separated values) or
GTF file format

Usage

export_gmql(samples, dir_out, is_gtf)

Arguments

samples GRangesList

dir_out folder path where to create a folder and write the sample files

is_gtf logical value indicating if samples have to be exported with GTF or GDM format

Details

The GMQL dataset is made up by two different file types:

• metadata files: they contain metadata associated with corrisponding sample.

• region files: they contain genomic regions data.

• region schema file: XML file that contains region attribute names (e.g. chr, start, end, pvalue)

Sample region files and metadata files are associated through file name: for example S_0001.gdm
for region file and S_0001.gdm.meta for its metadata file

extend 19

Value

None

See Also

import_gmql

Examples

Load and attach add-on GenomicRanges package
library(GenomicRanges)

These statemens create two GRanges with the region attributes: seqnames,
ranges (region coordinates) and strand, plus two column elements:
score and GC

gr1 <- GRanges(seqnames = "chr2", ranges = IRanges(3, 6), strand = "+",
score = 5L, GC = 0.45)

gr2 <- GRanges(seqnames = c("chr1", "chr1"),
ranges = IRanges(c(7,13), width = 3), strand = c("+", "-"),
score = 3:4, GC = c(0.3, 0.5))

This statement creates a GRangesList using the previous GRanges

grl = GRangesList(gr1, gr2)

This statement defines the path to the subdirectory "example" of the
package "RGMQL" and exports the GRangesList as GMQL datasets with sample
files in GTF file format, using the last name of 'dir_out' path as
dataset name

test_out_path <- system.file("example", package = "RGMQL")
export_gmql(grl, test_out_path, TRUE)

extend Method extend

Description

Wrapper to GMQL EXTEND operator

For each sample in an input dataset, it generates new metadata attributes as result of aggregate
functions applied to sample region attributes and adds them to the existing metadata attributes of
the sample. Aggregate functions are applied sample by sample.

Usage

extend(.data, ...)

S4 method for signature 'GMQLDataset'
extend(.data, ...)

20 filter

Arguments

.data GMQLDataset class object

... a series of expressions separated by comma in the form key = aggregate. The
aggregate is an object of class AGGREGATES. The aggregate functions avail-
able are: SUM, COUNT, MIN, MAX, AVG, MEDIAN, STD, BAG, BAGD, Q1, Q2, Q3. Every
aggregate accepts a string value, except for COUNT, which does not have any
value. Argument of ’aggregate function’ must exist in schema, i.e. among re-
gion attributes. Two styles are allowed:

• list of key-value pairs: e.g. sum = SUM("pvalue")
• list of values: e.g. SUM("pvalue")

"mixed style" is not allowed

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "data"

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data <- read_gmql(test_path)

This statement counts the regions in each sample and stores their number
as value of the new metadata attribute RegionCount of the sample.

e <- extend(data, RegionCount = COUNT())

This statement copies all samples of data dataset into 'res' dataset,
and then calculates for each of them two new metadata attributes:
1. RegionCount is the number of sample regions;
2. MinP is the minimum pvalue of the sample regions.
res sample regions are the same as the ones in data.

res = extend(data, RegionCount = COUNT(), MinP = MIN("pvalue"))

filter Method filter

Description

Wrapper to GMQL SELECT operator

It creates a new dataset from an existing one by extracting a subset of samples and/or regions
from the input dataset according to the predicate. Each sample in the output dataset has the same

filter 21

region attributes, values, and metadata as in the input dataset. When semijoin function is defined, it
extracts those samples containing all metadata attributes defined in semijoin clause with at least one
metadata value in common with semijoin dataset. If no metadata in common between input dataset
and semijoin dataset, no sample is extracted.

Usage

S4 method for signature 'GMQLDataset'
filter(.data, m_predicate = NULL,
r_predicate = NULL, semijoin = NULL)

Arguments

.data GMQLDataset class object

m_predicate logical predicate made up by R logical operations on metadata attributes. Only
!, |, ||, &, && are admitted.

r_predicate logical predicate made up by R logical operations on region attributes. Only !, |,
||, &, && are admitted.

semijoin semijoin function to define filter method with semijoin condition (see exam-
ples).

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "data"

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data <- read_gmql(test_path)

This statement selects from input the data samples of patients younger
than 70 years old, based on filtering on sample metadata attribute
'patient_age'

filter_data <- filter(data, patient_age < 70)

This statement defines the path to the folder "DATASET_GDM" in the
subdirectory "example" of the package "RGMQL" and opens such folder
as a GMQL dataset named "join_data"

test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
join_data <- read_gmql(test_path2)

This statement creates a new dataset called 'jun_tf' by selecting those
samples and their regions from the existing 'data' dataset such that:
Each output sample has a metadata attribute called antibody_target
with value JUN.

22 filter_and_extract

Each output sample also has not a metadata attribute called "cell"
that has the same value of at least one of the values that a metadata
attribute equally called cell has in at least one sample
of the 'join_data' dataset.
For each sample satisfying previous conditions, only its regions that
have a region attribute called 'pvalue' with the associated value
less than 0.01 are conserved in output

jun_tf <- filter(data, antibody_target == "JUN", pvalue < 0.01,
semijoin(join_data, FALSE, conds("cell")))

filter_and_extract Filter and extract function

Description

This function lets user to create a new GRangesList with fixed information: seqnames, ranges
and strand, and a variable part made up by the regions defined as input. The metadata and meta-
data_prefix are used to filter the data and choose only the samples that match at least one metdatata
with its prefix. The input regions are shown for each sample obtained from filtering.

Usage

filter_and_extract(data, metadata = NULL, metadata_prefix = NULL,
region_attributes = NULL, suffix = "antibody_target")

Arguments

data string GMQL dataset folder path or GRangesList object
metadata vector of strings containing names of metadata attributes to be searched for in

metadata files. Data will be extracted if at least one condition is satisfied: this
condition is logically "ANDed" with prefix filtering (see below) if NULL no
filtering action occures (i.e every sample is taken for region filtering)

metadata_prefix

vector of strings that will support the metadata filtering. If defined, each ’meta-
data’ is concatenated with the corresponding prefix.

region_attributes

vector of strings that extracts only region attributes specified; if NULL no re-
gions attribute is taken and the output is only GRanges made up by the region
coordinate attributes (seqnames, start, end, strand)

suffix name for each metadata column of GRanges. By default it is the value of the
metadata attribute named "antibody_target". This string is taken from sample
metadata file or from metadata() associated. If not present, the column name is
the name of selected regions specified by ’region_attributes’ input parameter

Details

This function works only with datatset or GRangesList all whose samples or Granges have the same
region coordinates (chr, ranges, strand) ordered in the same way for each sample

In case of GRangesList data input, the function searches for metadata into metadata() function
associated to GRangesList.

group_by 23

Value

GRanges with selected regions

Examples

This statement defines the path to the folder "DATASET" in the
subdirectory "example" of the package "RGMQL" and filters such folder
dataset including at output only "pvalue" and "peak" region attributes

test_path <- system.file("example", "DATASET", package = "RGMQL")
filter_and_extract(test_path, region_attributes = c("pvalue", "peak"))

This statement imports a GMQL dataset as GRangesList and filters it
including at output only "pvalue" and "peak" region attributes, the sort
function makes sure that the region coordinates (chr, ranges, strand)
of all samples are ordered correctly

grl = import_gmql(test_path, TRUE)
sorted_grl = sort(grl)
filter_and_extract(sorted_grl, region_attributes = c("pvalue", "peak"))

group_by Method group_by

Description

Wrapper to GMQL GROUP operator

It performs the grouping of samples and/or sample regions of the input dataset based on one speci-
fied metadata and/or region attribute. If the metadata attribute is multi-value, i.e., it assumes multi-
ple values for sample (e.g., both <disease, cancer> and <disease, diabetes>), the grouping identifies
different groups of samples for each attribute value combination (e.g., group1 for samples that fea-
ture the combination <disease, cancer>, group2 for samples that feature the combination <disease,
diabetes>, and group3 for samples that feature both combinations <disease, cancer> and <disease,
diabetes>). For each obtained group, it is possible to request the evaluation of aggregate func-
tions on metadata attributes; these functions consider the metadata contained in all samples of the
group. The regions, their attributes and their values in output are the same as the ones in input for
each sample, and the total number of samples does not change. All metadata in the input samples
are conserved with their values in the output samples, with the addition of the "_group" attribute,
whose value is the identifier of the group to which the specific sample is assigned; other metadata
attributes can be added as aggregate functions computed on specified metadata. When used on re-
gion attributes, group_by can group regions of each sample individually, based on their coordinates
(chr, start, stop, strand) and possibly also on other specified grouping region attributes (when these
are present in the schema of the input dataset). In each sample, regions found in the same group
(i.e., regions with same coordinates and grouping attribute values), are combined into a single re-
gion; this allows to merge regions that are duplicated inside the same sample (based on the values
of their coordinates and of other possible specified region attributes). For each grouped region, it is
possible to request the evaluation of aggregate functions on other region attributes (i.e., which are

24 group_by

not coordinates, or grouping region attributes). This use is independent on the possible grouping re-
alised based on metadata. The generated output schema only contains the original region attributes
on which the grouping has been based, and additionally the attributes in case calculated as aggre-
gated functions. If the group_by is applied only on regions, the output metadata and their values are
equal to the ones in input. Both when applied on metadata and on regions, the group_by operation
returns a number of output samples equal to the number of input ones. Note that the two possible
uses of group_by, on metadata and on regions, are perfectly orthogonal, therefore they can be used
in combination or independently.

Usage

S4 method for signature 'GMQLDataset'
group_by(.data, groupBy_meta = conds(),
groupBy_regions = c(""), region_aggregates = NULL,
meta_aggregates = NULL)

Arguments

.data GMQLDataset object

groupBy_meta conds function to support methods with groupBy or JoinBy input parameter
groupBy_regions

vector of strings made up by region attribute names
region_aggregates

It accepts a list of aggregate functions on region attribute. All the elements in the
form key = aggregate. The aggregate is an object of class AGGREGATES. The
aggregate functions available are: SUM, COUNT, MIN, MAX, AVG, MEDIAN, STD, BAG,
BAGD, Q1, Q2, Q3. Every aggregate accepts a string value, except for COUNT,
which does not have any value. Argument of ’aggregate function’ must exist in
schema, i.e. among region attributes. Two styles are allowed:

• list of key-value pairs: e.g. sum = SUM("pvalue")
• list of values: e.g. SUM("pvalue")

"mixed style" is not allowed
meta_aggregates

It accepts a list of aggregate functions on metadata attribute. All the elements in
the form key = aggregate. The aggregate is an object of class AGGREGATES.
The aggregate functions available are: SUM, COUNTSAMP, MIN, MAX, AVG, MEDIAN,
STD, BAG, BAGD, Q1, Q2, Q3. Every aggregate accepts a string value, except for
COUNTSAMP, which does not have any value. Argument of ’aggregate func-
tion’ must exist in schema, i.e. among region attributes. Two styles are allowed:

• list of key-value pairs: e.g. sum = SUM("cell")
• list of values: e.g. SUM("cell")

"mixed style" is not allowed

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution

import_gmql 25

and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named "exp"
using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
exp = read_gmql(test_path)

This GMQL statement groups samples of the input 'exp' dataset according
to their value of the metadata attribute 'tumor_type' and computes the
maximum value that the metadata attribute 'size' takes inside the samples
belonging to each group. The samples in the output GROUPS_T dataset
have a new _group metadata attribute which indicates which group they
belong to, based on the grouping on the metadata attribute tumor_type.
In addition, they present the new metadata aggregate attribute 'MaxSize'.
Note that the samples without metadata attribute 'tumor_type' are
assigned to a single group with _group value equal 0

GROUPS_T = group_by(exp, conds("tumor_type"),
meta_aggregates = list(max_size = MAX("size")))

This GMQL statement takes as input dataset the same input dataset as
the previous example. Yet, it calculates new _group values based on the
grouping attribute 'cell', and adds the metadata aggregate attribute
'n_samp', which counts the number of samples belonging to the respective
group. It has the following output GROUPS_C dataset samples
(note that now no sample has metadata attribute _group with value
equal 0 since all input samples include the metadata attribute cell,
with different values, on which the new grouping is based)

GROUPS_C = group_by(exp, conds("cell"),
meta_aggregates = list(n_samp = COUNTSAMP()))

This GMQL statement groups the regions of each 'exp' dataset sample by
region coordinates chr, left, right, strand (these are implicitly
considered) and the additional region attribute score (which is
explicitly specified), and keeps only one region for each group.
In the output GROUPS dataset schema, the new region attributes
avg_pvalue and max_qvalue are added, respectively computed as the
average of the values taken by the pvalue and the maximum of the values
taken by the qvalue region attributes in the regions grouped together,
and the computed value is assigned to each region of each output sample.
Note that the region attributes which are not coordinates or score are
discarded.

GROUPS = group_by(exp, groupBy_regions = "score",
region_aggregates = list(avg_pvalue = AVG("pvalue"),
max_qvalue = MAX("qvalue")))

import_gmql Create GRangesList from GMQL dataset

26 init_gmql

Description

It creates a GRangesList from GMQL samples in dataset. It reads sample files in GTF or GDM/tab-
delimited format.

Usage

import_gmql(dataset_path, is_gtf)

Arguments

dataset_path string with GMQL dataset folder path

is_gtf logical value indicating if dataset samples are in GTF format; if TRUE and
dataset does not contain GTF samples, an error occurs

Value

GRangesList containing all GMQL samples in dataset

See Also

export_gmql

Examples

This statement defines the path to the subdirectory "example" of the
package "RGMQL" and imports as GRangesList the contained GMQL dataset

test_path <- system.file("example", "DATASET", package = "RGMQL")
grl = import_gmql(test_path, TRUE)

init_gmql Init GMQL server

Description

It initializes and runs GMQL server for executing GMQL query. It also performs a login to GMQL
REST services suite, if needed

Usage

init_gmql(output_format = "GTF", remote_processing = FALSE,
url = NULL, username = NULL, password = NULL)

login_gmql 27

Arguments

output_format string that identifies the output format of all sample files. It can be TAB, GTF
or COLLECT:

• TAB: tab-delimited file format
• GTF: tab-delimited text standard format based on the General Feature For-

mat
• COLLECT: used for storing output in memory (only in the case of local

processing, i.e., remote_processing = FALSE)

remote_processing

logical value specifying the processing mode. True for processing on cluster
(remote), false for local processing.

url string url of server: It must contain the server address and base url; service
name is added automatically. If NULL, no login is performed. You can always
perform it by calling the function login_gmql explicitly

username string name used during remote server signup

password string password used during remote server signup

Value

None

Examples

This statement initializes GMQL with local processing with sample files
output format as tab-delimited

init_gmql("tab", FALSE)

This statement initializes GMQL with remote processing

remote_url = "http://www.gmql.eu/gmql-rest/"
init_gmql(remote_processing = TRUE, url = remote_url)

login_gmql Login to GMQL

Description

Login to GMQL REST services suite as a registered user, specifying username and password, or as
guest, using the proper GMQL web service available on a remote server

Usage

login_gmql(url, username = NULL, password = NULL)

28 logout_gmql

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

username string name used during signup

password string password used during signup

Details

If both username and password are missing, you will be logged as guest. After login you will
receive an authentication token. As token remains valid on server (until the next login / registration
or logout), a user can safely use a token for a previous session as a convenience; this token is
saved in R Global environment to perform subsequent REST call even on complete R restart (if the
environment has been saved). If error occurs, a specific error is printed

Value

None

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

logout_gmql Logout from GMQL

Description

Logout from GMQL REST services suite using the proper GMQL web service available on a remote
server

Usage

logout_gmql(url)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

Details

After logout the authentication token will be invalidated. The authentication token is removed from
R Global environment. If error occurs, a specific error is printed

Value

None

log_job 29

Examples

Login to GMQL REST services suite as guest, then logout

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)
logout_gmql(remote_url)

log_job Show a job log or trace

Description

It shows a job log or traces a specific job

Usage

show_job_log(url, job_id)

trace_job(url, job_id)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

job_id string id of the job

Details

If error occurs, a specific error is printed

Value

Log or trace text

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

List all jobs
list_jobs <- show_jobs_list(remote_url)

Not run:
jobs_1 <- list_jobs$jobs[[1]]

Show jobs_1 log
show_job_log(remote_url, jobs_1)

Trace jobs_1

30 map

trace_job(remote_url, jobs_1)

End(Not run)

map Method map

Description

Wrapper to GMQL MAP operator

It computes, for each sample in the right dataset, aggregates over the values of the right dataset
regions that intersect with a region in a left dataset sample, for each region of each sample in the
left dataset. The number of generated output samples is the Cartesian product of the samples in the
two input datasets; each output sample has the same regions as the related input left dataset sample,
with their attributes and values, plus the attributes computed as aggregates over right region values.
Output sample metadata are the union of the related input sample metadata, whose attribute names
are prefixed with ’left’ or ’right’ respectively.

Usage

map(x, y, ...)

S4 method for signature 'GMQLDataset'
map(x, y, ..., joinBy = conds(),
count_name = "")

Arguments

x GMQLDataset class object

y GMQLDataset class object

... a series of expressions separated by comma in the form key = aggregate. The
aggregate is an object of class AGGREGATES. The aggregate functions avail-
able are: SUM, COUNT, MIN, MAX, AVG, MEDIAN, STD, BAG, BAGD, Q1, Q2, Q3. Every
aggregate accepts a string value, except for COUNT, which does not have any
value. Argument of ’aggregate function’ must exist in schema, i.e. among re-
gion attributes. Two styles are allowed:

• list of key-value pairs: e.g. sum = SUM("pvalue")
• list of values: e.g. SUM("pvalue")

"mixed style" is not allowed

joinBy conds function to support methods with groupBy or JoinBy input parameter

count_name string defining the metadata count name; if it is not specified the name is "count_left_right"

Details

When the joinby clause is present, only pairs of samples of x dataset and of y dataset with metadata
M1 and M2, respectively, that satisfy the joinby condition are considered.

The clause consists of a list of metadata attribute names that must be present with equal values in
both M1 and M2

merge 31

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folders "DATASET" and "DATASET_GDM" in the subdirectory
"example" of the package "RGMQL", and opens such folders as a GMQL
dataset named "exp" and "ref", respectively, using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
exp = read_gmql(test_path)
ref = read_gmql(test_path2)

This statement counts the number of regions in each sample from exp
dataset that overlap with a ref dataset region, and for each ref region
it computes the minimum score of all the regions in each exp sample that
overlap with it. The MAP joinBy option ensures that only the exp samples
referring to the same 'cell_tissue' of a ref sample are mapped on such
ref sample; exp samples with no cell_tissue metadata attribute, or with
such metadata attribute, but with a different value from the one(s)
of ref sample(s), are disregarded.

out = map(ref, exp, minScore = MIN("score"), joinBy = conds("cell_tissue"))

merge Method merge

Description

Wrapper to GMQL JOIN operator

It takes in input two datasets, respectively known as anchor (left) and experiment (right) and returns
a dataset of samples consisting of regions extracted from the operands according to the specified
conditions (a.k.a genometric_predicate and region_attribute predicate). The number of generated
output samples is the Cartesian product of the number of samples in the anchor and in the experi-
ment dataset (if joinBy is not specified). The output metadata are the union of the input metadata,
with their attribute names prefixed with left or right dataset name, respectively.

Usage

S4 method for signature 'GMQLDataset,GMQLDataset'
merge(x, y,
genometric_predicate = NULL, region_output = "CAT",
joinBy = conds(), reg_attr = c(""))

32 merge

Arguments

x GMQLDataset class object

y GMQLDataset class object
genometric_predicate

it is a list of DISTAL objects. For details of DISTAL objects see: DLE, DGE, DL,
DG, MD, UP, DOWN

region_output single string that declares which region is given in output for each input pair of
left dataset and right dataset regions satisfying the genometric predicate and/or
the region attribute predicate:

• LEFT: It outputs the anchor regions from ’x’ that satisfy the genometric
and/or region attribute predicate

• RIGHT: It outputs the experiment regions from ’y’ that satisfy the geno-
metric and/or region attribute predicate

• INT (intersection): It outputs the overlapping part (intersection) of the ’x’
and ’y’ regions that satisfy the genometric and/or region attribute predicate;
if the intersection is empty, no output is produced

• CAT: It outputs the concatenation between the ’x’ and ’y’ regions that sat-
isfy the genometric and/or region attribute predicate, (i.e. the output regions
defined as having left (right) coordinates equal to the minimum (maximum)
of the corresponding coordinate values in the ’x’ and ’y’ regions satisfying
the genometric and/or region attribute predicate)

• LEFT_DIST: It outputs the duplicate elimination of ’x’ output regions with
the same coordinates and values, regardless the ’y’ paired region and its
values. In this case, the output region attributes and their values are all and
only those of ’x’, and the output metadata are equal to the ’x’ metadata,
without additional prefixes

• RIGHT_DIST: It outputs the duplicate elimination of ’y’ output regions
with the same coordinates and values, regardless the ’x’ paired region and
its values. In this case, the output regions attributes and their values are all
and only those of ’y’, and the output metadata are equal to the ’y’ metadata,
without additional prefixes

• BOTH: It outputs the same regions as LEFT, but it adds in the output region
attributes the coordinates of the ’y’ paired region that, together with the ’x’
output region, satisfies the genometric and/or region attribute predicate

joinBy condition_evaluation function to support methods with groupBy or JoinBy
input paramter

reg_attr vector of strings made up by region field attribute names, whose values in the
paired left and right dataset regions must be equal in order to consider the two
paired regions. If specified, region_output cannot be INT or CAT.

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folders "DATASET" and "DATASET_GDM" in the subdirectory

OPERATOR-Object 33

"example" of the package "RGMQL" and opens such folders as a GMQL
datasets named TSS and HM, respectively, using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
TSS = read_gmql(test_path)
HM = read_gmql(test_path2)

Given a dataset HM and one called TSS with a sample including
Transcription Start Site annotations, this statement searches for those
regions of HM that are at a minimal distance from a transcription start
site (TSS) and takes the first/closest one for each TSS, provided that
such distance is lesser than 120K bases and joined TSS and HM
samples are obtained from the same provider (joinby clause).

join_data = merge(TSS, HM, genometric_predicate = list(MD(1), DLE(120000)),
conds("provider"), region_output = "RIGHT")

OPERATOR-Object OPERATOR object class constructor

Description

This class constructor is used to create instances of OPERATOR object, to be used in GMQL
functions that require operator on value.

Usage

META(value, type = NULL)

NIL(type)

SQRT(value)

Arguments

value string identifying name of metadata attribute

type string identifying the type of the attribute value; it must be: INTEGER, DOU-
BLE or STRING. For NIL() function, only INTEGER and DOUBLE are al-
lowed

Details

• META: It prepares input parameter to be passed to library function meta, performing all the
type conversions needed

• SQRT: It prepares input parameter to be passed to library function sqrt, performing all the type
conversions needed

• NIL: It prepares input parameter to be passed to library function null, performing all the type
conversions needed

34 Ordering-Functions

Value

Operator object

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "exp"

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
exp = read_gmql(test_path)

This statement allows to select, in all input samples, all those regions
for which the region attribute score has a value which is greater
than the metadata attribute value "avg_score" in their sample.

data = filter(exp, r_predicate = score > META("avg_score"))

This statement defines new numeric region attributes with "null" value.
The syntax for creating a new attribute with null value is
attribute_name = NULL(TYPE), where type may be INTEGER or DOUBLE.

out = select(exp, regions_update = list(signal = NIL("INTEGER"),
pvalue = NIL("DOUBLE")))

This statement allows to build an output dataset named 'out' such that
all the samples from the input dataset 'exp' are conserved,
as well as their region attributes (and their values)
and their metadata attributes (and their values).
The new metadata attribute 'concSq' is added to all output samples
with value correspondent to the mathematical squared root
of the pre-existing metadata attribute 'concentration'.

out = select(exp, metadata_update = list(concSq = SQRT("concentration")))

Ordering-Functions Ordering functions

Description

These functions are used to create a series of metadata as string that require ordering on value; it is
used only in arrange method (see example).

Usage

DESC(...)

ASC(...)

read_gmql 35

Arguments

... series of metatdata as string

Details

• ASC: It defines an ascending order for input value
• DESC: It defines a descending order for input value

Value

Ordering object

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such file as a GMQL dataset named
"data" using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data = read_gmql(test_path)

This statement orders the samples according to the Region_Count metadata
attribute and takes the two samples that have the lowest count.

asc = arrange(data, list(ASC("Region_Count")), fetch_opt = "mtop",
num_fetch = 2)

This statement orders the regions of each samples according to their
pvalue attribute value and in each sample it takes the first seven
regions with the highest pvalue

desc = arrange(data, regions_ordering = list(DESC("pvalue")),
reg_fetch_opt = "rtop", reg_num_fetch = 7)

read_gmql Function read

Description

It reads a GMQL dataset, as a folder containing some homogenus samples on disk or as a GRanges-
List, saving it in Scala memory in a way that can be referenced in R. It is also used to read a
repository dataset in case of remote processing.

Usage

read_gmql(dataset, parser = "CustomParser", is_local = TRUE,
is_GMQL = TRUE)

read_GRangesList(samples)

36 read_gmql

Arguments

dataset folder path for GMQL dataset or dataset name on repository

parser string used to parsing dataset files. The Parsers available are:

• BedParser
• BroadPeakParser
• NarrowPeakParser
• CustomParser

Default is CustomParser.

is_local logical value indicating local or remote dataset

is_GMQL logical value indicating GMQL dataset or not

samples GRangesList

Details

Normally, a GMQL dataset contains an XML schema file that contains name of region attributes.
(e.g chr, start, stop, strand) The CustomParser reads this XML schema; if you already know what
kind of schema your files have, use one of the parsers defined, without reading any XML schema.

If GRangesList has no metadata: i.e. metadata() is empty, two metadata are generated:

• "provider" = "PoliMi"

• "application" = "RGMQL"

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "data" using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data = read_gmql(test_path)

This statement opens such folder as a GMQL dataset named "data" using
"NarrowPeakParser"
dataPeak = read_gmql(test_path,"NarrowPeakParser")

This statement reads a remote public dataset stored into GMQL system
repository. For a public dataset in a (remote) GMQL repository the
prefix "public." is needed before dataset name

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)
data1 = read_gmql("public.Example_Dataset_1", is_local = FALSE)

register_gmql 37

register_gmql Register into remote GMQL

Description

Register to GMQL REST services suite using the proper GMQL web service available on a remote
server.

Usage

register_gmql(url, username, psw, email, first_name, last_name)

Arguments

url string url of server: It must contains the server address and base url; service
name is added automatically

username string user name used to login in

psw string password used to login in

email string user email

first_name string user first name

last_name string user last name

Details

After registration you will receive an authentication token. As token remains valid on server (until
the next login / registration or logout), a user can safely use a token for a previous session as a
convenience; this token is saved in R Global environment to perform subsequent REST calls or
batch processing even on complete R restart (if the environment has been saved). If error occurs, a
specific error is printed.

Value

None

Examples

Register to GMQL REST services suite

remote_url = "http://www.gmql.eu/gmql-rest/"
Not run:
register_gmql(remote_url,"foo","foo","foo@foo.com","foo","foo")

End(Not run)

38 run_query

remote_processing Disable or Enable remote processing

Description

It allows to enable or disable remote processing

Usage

remote_processing(is_remote)

Arguments

is_remote logical value used in order to set the processing mode. TRUE: you set a remote
query processing mode, otherwise it will be local

Details

The invocation of this function allows to change mode of processing. After invoking collect()
function, it is not possbile to switch the processing mode.

Value

None

Examples

This statement initializes GMQL with local processing with sample
files output format as tab-delimited, and then it changes processing
mode to remote

init_gmql("tab", remote_processing = FALSE)

remote_processing(TRUE)

run_query Run a GMQL query

Description

It runs a GMQL query into repository taken from file or inserted as text string, using the proper
GMQL web service available on a remote server

Usage

run_query(url, queryName, query, output_gtf = TRUE)

run_query_fromfile(url, filePath, output_gtf = TRUE)

run_query 39

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

queryName string name of the GMQL query file

query string text of the GMQL query

output_gtf logical value indicating file format used for storing samples generated by the
query. The possiblities are:

• GTF

• TAB

filePath string path of a txt file containing a GMQL query

Details

If error occurs, a specific error is printed

Value

None

Examples

Not run:

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

Run query as string input parameter
NOTE: not very suitable for long queries

run_query(remote_url, "query_1", "DATASET = SELECT() Example_Dataset1;
MATERIALIZE DATASET INTO RESULT_DS;", output_gtf = FALSE)

With system.file() this statement defines the path to the folder
"example" of the package "RGMQL", and then it executes the query
written in the text file "query1.txt"

test_path <- system.file("example", package = "RGMQL")
test_query <- file.path(test_path, "query1.txt")
run_query_fromfile(remote_url, test_query, output_gtf = FALSE)

End(Not run)

40 sample_region

sample_metadata Show metadata list from dataset sample

Description

It retrieves metadata of a specific sample in dataset using the proper GMQL web service available
on a remote server

Usage

sample_metadata(url, datasetName, sampleName)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

datasetName string name of dataset of interest

sampleName string name of sample of interest

Details

If error occurs, a specific error is printed

Value

List of metadata in the form ’key = value’

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

This statement retrieves metadata of sample 'S_00000' from public
dataset 'Example_Dataset_1'

sample_metadata(remote_url, "public.Example_Dataset_1", "S_00000")

sample_region Show regions data from a dataset sample

Description

It retrieves regions data of a specific sample (whose name is specified in the parameter "sample-
Name") in a specific dataset (whose name is specified in the parameter "datasetName") using the
proper GMQL web service available on a remote server

save_query 41

Usage

sample_region(url, datasetName, sampleName)

Arguments

url string url of server. It must contain the server address and base url; service name
is added automatically

datasetName string name of dataset of interest

sampleName string name of sample of interest

Details

If error occurs, a specific error is printed

Value

GRanges data containing regions of sample

Examples

Not run:

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

This statement retrieves regions data of sample "S_00000" from public
dataset "Example_Dataset_1"

sample_region(remote_url, "public.Example_Dataset_1", "S_00000")

End(Not run)

save_query Save GMQL query

Description

It saves a GMQL query into repository, taken from file or inserted as text string, using the proper
GMQL web service available on a remote server

Usage

save_query(url, queryName, queryTxt)

save_query_fromfile(url, queryName, filePath)

42 select

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

queryName string name of query

queryTxt string text of GMQL query

filePath string local file path of a txt file containing a GMQL query

Details

If you save a query with the same name of another query already stored in repository, you will
overwrite it; if no error occurs, it prints: "Saved", otherwise it prints the error

Value

None

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

This statement saves query written directly as input string parameter
with name "dna_query"

save_query(remote_url, "example_query",
"DATASET = SELECT() Example_Dataset_1; MATERIALIZE DATASET INTO RESULT_DS;")

With system.file() this statement defines the path to the folder
"example" of the package "RGMQL", and then it saves the query written
in the text file "query1.txt" into remote repository

test_path <- system.file("example", package = "RGMQL")
test_query <- file.path(test_path, "query1.txt")
save_query_fromfile(remote_url, "query1", test_query)

select Method select

Description

Wrapper to GMQL PROJECT operator

It creates, from an existing dataset, a new dataset with all the samples from input dataset, but keeping
for each sample in the input dataset only those metadata and/or region attributes specified. Region
coordinates and values of the remaining metadata and/or region attributes remain equal to those in
the input dataset. It allows to:

• Remove existing metadata and/or region attributes from a dataset

• Update or set new metadata and/or region attributes in the result

select 43

Usage

S4 method for signature 'GMQLDataset'
select(.data, metadata = NULL,
metadata_update = NULL, all_but_meta = FALSE, regions = NULL,
regions_update = NULL, all_but_reg = FALSE)

Arguments

.data GMQLDataset class object

metadata vector of strings made up by metadata attributes
metadata_update

list of updating rules in the form of key = value generating new metadata at-
tributes and/or attribute values. The following options are available:

• All aggregation functions already defined by AGGREGATES object
• All basic mathematical operations (+, -, *, /), including parenthesis
• SQRT constructor object defined by OPERATOR object

all_but_meta logical value indicating which metadata you want to exclude; If FALSE, only the
metadata attributes specified in metadata argument are kept in the output of the
operation; if TRUE, the metadata are all kept except those in metadata argument.
If metadata input parameter is not defined all_but_meta is not considerd.

regions vector of strings made up by region attributes

regions_update list of updating rules in the form of key = value generating new genomic region
attributes and/or values. The following options are available:

• All aggregation functions already defined by AGGREGATES object
• All basic mathematical operations (+, -, *, /), including parenthesis
• SQRT, META, NIL constructor objects defined by OPERATOR object

all_but_reg logical value indicating which region attributes you want to exclude; if FALSE,
only the regions attributes specified in regions argumentare kept in the output of
the operation; if TRUE, the regions attributes are all kept except those in regions
argument. If regions is not defined, all_but_reg is not considerd.

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "data"

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
data = read_gmql(test_path)

This statement creates a new dataset called CTCF_NORM_SCORE by preserving
all region attributes apart from score, and creating a new region
attribute called new_score by dividing the existing score value of each
region by 1000.0 and incrementing it by 100.

44 semijoin

It also generates, for each sample of the new dataset,
a new metadata attribute called normalized with value 1,
which can be used in future selections.

CTCF_NORM_SCORE = select(data, metadata_update = list(normalized = 1),
regions_update = list(new_score = (score / 1000.0) + 100),
regions = c("score"), all_but_reg = TRUE)

semijoin Semijoin condition

Description

This function is used as support to the filter method to define semijoin conditions on metadata

Usage

semijoin(.data, is_in = TRUE, groupBy)

Arguments

.data GMQLDataset class object

is_in logical value: TRUE => for a given sample of input dataset ’.data’ in filter
method, if and only if there exists at least one sample in dataset ’data’ with
metadata attributes defined in groupBy and these attributes of ’data’ have at least
one value in common with the same attributes defined in at least one sample of
’.data’ in filter method, FALSE => semijoin condition is evaluated accord-
ingly.

groupBy condition_evaluation function to support methods with groupBy or JoinBy
input paramter

Value

semijoin condition as list

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folders "DATASET" and "DATASET_GDM" in the subdirectory
"example" of the package "RGMQL" and opens such folders as GMQL datasets
named "data" and "join_data", respectively

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
data <- read_gmql(test_path)
join_data <- read_gmql(test_path2)

setdiff 45

This statement creates a new dataset called 'jun_tf' by selecting those
samples and their regions from the existing 'data' dataset such that:
Each output sample has a metadata attribute called antibody_target
with value JUN.
Each output sample also has not a metadata attribute called cell
that has the same value of at least one of the values that a metadata
attribute equally called cell has in at least one sample
of the 'join_data' dataset.
For each sample satisfying previous conditions, only its regions that
have a region attribute called pValue with the associated value
less than 0.01 are conserved in output

jun_tf <- filter(data, antibody_target == "JUN", pvalue < 0.01,
semijoin(join_data, FALSE, conds("cell")))

setdiff Method setdiff

Description

Wrapper to GMQL DIFFERENCE operator

It produces one sample in the result for each sample of the left operand, by keeping the same
metadata of the left input sample and only those regions (with their attributes and values) of the
left input sample which do not intersect with any region in any right operand sample. The optional
joinBy clause is used to extract a subset of pairs from the Cartesian product of the two input datasets
x and y on which to apply the DIFFERENCE operator: only those samples that have the same value
for each specified metadata attribute are considered when performing the difference.

Usage

S4 method for signature 'GMQLDataset,GMQLDataset'
setdiff(x, y, joinBy = conds(),
is_exact = FALSE)

Arguments

x GMQLDataset class object

y GMQLDataset class object

joinBy conds function to support methods with groupBy or JoinBy input parameter

is_exact single logical value: TRUE means that the region difference is executed only on
regions in ’x’ dataset with exactly the same coordinates of at least one region
present in ’y’ dataset; if is_exact = FALSE, the difference is executed on all
regions in ’x’ dataset that overlap (even just one base) with at least one region
in ’y’ dataset

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

46 show_datasets_list

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folders "DATASET" and "DATASET_GDM" in the subdirectory
"example" of the package "RGMQL" and opens such folders as a GMQL
datasets named "data1" and "data2", respectively, using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
data1 = read_gmql(test_path)
data2 = read_gmql(test_path2)

This statement returns all the regions in the first dataset
that do not overlap any region in the second dataset.

out = setdiff(data1, data2)

This statement extracts for every pair of samples s1 in data1
and s2 in data2 having the same value of the metadata
attribute 'cell' the regions that appear in s1 but
do not overlap any region in s2.
Metadata of the result are the same as the metadata of s1.

out_t = setdiff(data1, data2, conds("cell"))

show_datasets_list Show datasets

Description

It shows all GMQL datasets stored by the user or public in remote repository, using the proper
GMQL web service available on a remote server

Usage

show_datasets_list(url)

Arguments

url single string url of server: It must contain the server address and base url; service
name is added automatically

Details

If error occurs, a specific error is printed

Value

List of datasets. Every dataset in the list is described by:

• name: name of dataset

• owner: public or name of the user

show_jobs_list 47

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

List all datasets

list <- show_datasets_list(remote_url)

show_jobs_list Show all jobs

Description

It shows all jobs (run, succeded or failed) invoked by the user on remote server using, the proper
GMQL web service available on a remote server

Usage

show_jobs_list(url)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

Details

If error occurs, a specific error is printed

Value

List of jobs. Every job in the list is described by:

• id: unique job identifier

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

List all jobs
list_jobs <- show_jobs_list(remote_url)

48 show_samples_list

show_queries_list Show all queries

Description

It shows all the GMQL queries saved by the user on remote repository, using the proper GMQL
web service available on a remote server

Usage

show_queries_list(url)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

Details

If error occurs, a specific error is printed

Value

List of queries. Every query in the list is described by:

• name: name of query

• text: text of GMQL query

Examples

Login to GMQL REST services suite
remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

List all queries executed on remote GMQL system
list <- show_queries_list(remote_url)

show_samples_list Show dataset samples

Description

It show all samples from a specific GMQL dataset on remote repository, using the proper GMQL
web service available on a remote server

Usage

show_samples_list(url, datasetName)

show_schema 49

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

datasetName name of dataset containing the samples whose list we like to get; if the dataset
is a public dataset, we have to add "public." as prefix, as shown in the example
below, otherwise no prefix is needed

Details

If error occurs, a specific error is printed

Value

List of samples in dataset. Every sample in the list is described by:

• id: id of sample

• name: name of sample

• path: sample repository path

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

This statement shows all samples present into public dataset
'Example_Dataset_1'

list <- show_samples_list(remote_url, "public.Example_Dataset_1")

show_schema Show dataset schema

Description

It shows the region attribute schema of a specific GMQL dataset on remote repository, using the
proper GMQL web service available on a remote server

Usage

show_schema(url, datasetName)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

datasetName name of dataset to get the schema; if the dataset is a public dataset, we have to
add "public." as prefix, as shown in the example below, otherwise no prefix is
needed

50 stop_gmql

Details

If error occurs, a specific error is printed

Value

List of region schema fields. Every field in the list is described by:

• name: name of field (e.g. chr, start, end, strand, ...)

• fieldType: (e.g. STRING, DOUBLE, ...)

Examples

Login to GMQL REST services suite as guest

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

Show schema of public dataset 'Example_Dataset_1'

list <- show_schema(remote_url, "public.Example_Dataset_1")

stop_gmql Stop GMQL server

Description

It stops GMQL server processing

Usage

stop_gmql()

Value

None

Examples

This statement first initializes GMQL with local processing and with
sample file output format as tab-delimited, and then stops it

init_gmql("tab", FALSE)

stop_gmql()

stop_job 51

stop_job Stop a job

Description

It stops a specific current query job

Usage

stop_job(url, job_id)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

job_id string id of the job

Details

If error occurs, a specific error is printed

Value

None

Examples

Not run:

Login to GMQL REST services suite at remote url

remote_url = "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

This statement shows all jobs at GMQL remote system and selects one
running job, saving it into 'jobs_1' (in this case is the first of the
list), and then stop it

list_jobs <- show_jobs_list(remote_url)
jobs_1 <- list_jobs$jobs[[1]]
stop_job(remote_url, jobs_1)

End(Not run)

52 take

take Method take

Description

Wrapper to TAKE operation

It saves the content of a dataset that contains samples metadata and regions as GRangesList. It is
normally used to store in memory the content of any dataset generated during a GMQL query. The
operation can be very time-consuming. If you invoked any materialization before take function, all
those datasets are materialized as folders.

Usage

take(.data, ...)

S4 method for signature 'GMQLDataset'
take(.data, rows = 0L)

Arguments

.data returned object from any GMQL function

... Additional arguments for use in other specific methods of the generic take func-
tion

rows number of regions rows for each sample that you want to retrieve and store in
memory. By default it is 0, that means take all rows for each sample

Value

GRangesList with associated metadata

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folder "DATASET" in the subdirectory "example"
of the package "RGMQL" and opens such folder as a GMQL dataset
named "rd" using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
rd = read_gmql(test_path)

This statement creates a dataset called 'aggr' which contains one
sample for each antibody_target and cell value found within the metadata
of the 'rd' dataset sample; each created sample contains all regions
from all 'rd' samples with a specific value for their
antibody_target and cell metadata attributes.

aggr = aggregate(rd, conds(c("antibody_target", "cell")))

This statement performs the query and returns the resulted dataset as
GRangesList named 'taken'. It returns only the first 45 regions of

union 53

each sample present into GRangesList and all the medatata associated
with each sample

taken <- take(aggr, rows = 45)

union Method union

Description

Wrapper to GMQL UNION operator

It is used to integrate samples of two homogeneous or heterogeneous datasets within a single
dataset; for each sample of either input dataset, a result sample is created as follows:

• Metadata are the same as in the original sample.

• Resulting schema is the schema of the left input dataset.

• Regions are the same (in coordinates and attribute values) as in the original sample, if it is
from the left input dataset; if it is from the right input dataset, its regions are the same in
coordinates, but only region attributes identical (in name and type) to those of the left input
dataset are retained, with the same values. Region attributes which are missing in an input
dataset sample w.r.t. the merged schema are set to null.

Usage

S4 method for signature 'GMQLDataset,GMQLDataset'
union(x, y)

Arguments

x GMQLDataset object

y GMQLDataset object

Value

GMQLDataset object. It contains the value to use as input for the subsequent GMQLDataset method

Examples

This statement initializes and runs the GMQL server for local execution
and creation of results on disk. Then, with system.file() it defines
the path to the folders "DATASET" and "DATASET_GDM" in the subdirectory
"example" of the package "RGMQL" and opens such folders as a GMQL
datasets named "data1" and "data2", respectively, using CustomParser

init_gmql()
test_path <- system.file("example", "DATASET", package = "RGMQL")
test_path2 <- system.file("example", "DATASET_GDM", package = "RGMQL")
data1 <- read_gmql(test_path)
data2 <- read_gmql(test_path2)

54 upload_dataset

This statement creates a dataset called 'full' which contains all samples
from the datasets 'data1' and 'data2'

res <- union(data1, data2)

upload_dataset Upload dataset

Description

It uploads a folder (GMQL or not) containing sample files using the proper GMQL web service
available on a remote server: a new dataset is created on remote repository

Usage

upload_dataset(url, datasetName, folderPath, schemaName = NULL,
isGMQL = TRUE)

Arguments

url string url of server: It must contain the server address and base url; service name
is added automatically

datasetName name of dataset to create in repository

folderPath string local path to the folder containing the samples files

schemaName string name of schema used to parse the samples; schemaName available are:

• NARROWPEAK

• BROADPEAK

• VCF

• BED

• BEDGRAPH

if schemaName is NULL, it looks for a XML schema file to read in the folder-
Path

isGMQL logical value indicating whether it is uploaded a GMQL dataset or not

Details

If no error occurs, it prints "Upload Complete", otherwise a specific error is printed

Value

None

upload_dataset 55

Examples

Not run:

This statement defines the path to the folder "DATASET_GDM" in the
subdirectory "example" of the package "RGMQL"

test_path <- system.file("example", "DATASET_GDM", package = "RGMQL")

Login to GMQL REST services suite at remote url

remote_url <- "http://www.gmql.eu/gmql-rest/"
login_gmql(remote_url)

Upload of GMQL dataset with "dataset1" as name, without specifying any
schema

upload_dataset(remote_url, "dataset1", folderPath = test_path)

End(Not run)

Index

aggregate, 3
aggregate,GMQLDataset-method

(aggregate), 3
AGGREGATES-Object, 4
ALL, 11
ALL (Cover-Param), 12
ANY, 11
ANY (Cover-Param), 12
arrange, 6
arrange,GMQLDataset-method (arrange), 6
ASC, 7
ASC (Ordering-Functions), 34
AVG, 10, 20, 24, 30
AVG (AGGREGATES-Object), 4

BAG, 10, 20, 24, 30
BAG (AGGREGATES-Object), 4
BAGD, 10, 20, 24, 30
BAGD (AGGREGATES-Object), 4

collect, 8
collect,GMQLDataset-method (collect), 8
compile_query, 9
compile_query_fromfile (compile_query),

9
condition_evaluation, 3, 32, 44
condition_evaluation

(Evaluation-Function), 17
conds, 11, 24, 30, 45
conds (Evaluation-Function), 17
COUNT, 10, 20, 24, 30
COUNT (AGGREGATES-Object), 4
COUNTSAMP, 24
COUNTSAMP (AGGREGATES-Object), 4
cover, 10
cover,GMQLDataset-method (cover), 10
Cover-Param, 12

delete_dataset, 13
DESC, 7
DESC (Ordering-Functions), 34
DG, 32
DG (DISTAL-Object), 14
DGE, 32

DGE (DISTAL-Object), 14
DISTAL-Object, 14
DL, 32
DL (DISTAL-Object), 14
DLE, 32
DLE (DISTAL-Object), 14
DOWN, 32
DOWN (DISTAL-Object), 14
download_as_GRangesList

(download_dataset), 16
download_dataset, 16

Evaluation-Function, 17
execute, 17
export_gmql, 18, 26
extend, 19
extend,GMQLDataset-method (extend), 19
extend-method (extend), 19

filter, 20, 44
filter,GMQLDataset-method (filter), 20
filter_and_extract, 22

group_by, 23
group_by,GMQLDataset-method (group_by),

23

import_gmql, 19, 25
init_gmql, 26

log_job, 29
login_gmql, 27, 27
logout_gmql, 28

map, 30
map,GMQLDataset-method (map), 30
map-method (map), 30
MAX, 10, 20, 24, 30
MAX (AGGREGATES-Object), 4
MD, 32
MD (DISTAL-Object), 14
MEDIAN, 10, 20, 24, 30
MEDIAN (AGGREGATES-Object), 4
merge, 31

56

INDEX 57

merge,GMQLDataset,GMQLDataset-method
(merge), 31

META (OPERATOR-Object), 33
MIN, 10, 20, 24, 30
MIN (AGGREGATES-Object), 4

NIL (OPERATOR-Object), 33

OPERATOR-Object, 33
Ordering-Functions, 34

Q1, 10, 20, 24, 30
Q1 (AGGREGATES-Object), 4
Q2, 10, 20, 24, 30
Q2 (AGGREGATES-Object), 4
Q3, 10, 20, 24, 30
Q3 (AGGREGATES-Object), 4

read_gmql, 35
read_GRangesList (read_gmql), 35
register_gmql, 37
remote_processing, 38
run_query, 38
run_query_fromfile (run_query), 38

sample_metadata, 40
sample_region, 40
save_query, 41
save_query_fromfile (save_query), 41
select, 42
select,GMQLDataset-method (select), 42
semijoin, 21, 44
setdiff, 45
setdiff,GMQLDataset,GMQLDataset-method

(setdiff), 45
show_datasets_list, 46
show_job_log (log_job), 29
show_jobs_list, 47
show_queries_list, 48
show_samples_list, 48
show_schema, 49
SQRT (OPERATOR-Object), 33
STD, 10, 20, 24, 30
STD (AGGREGATES-Object), 4
stop_gmql, 50
stop_job, 51
SUM, 10, 20, 24, 30
SUM (AGGREGATES-Object), 4

take, 52
take,GMQLDataset-method (take), 52
take-method (take), 52
trace_job (log_job), 29

union, 53
union,GMQLDataset,GMQLDataset-method

(union), 53
UP, 32
UP (DISTAL-Object), 14
upload_dataset, 54

	aggregate
	AGGREGATES-Object
	arrange
	collect
	compile_query
	cover
	Cover-Param
	delete_dataset
	DISTAL-Object
	download_dataset
	Evaluation-Function
	execute
	export_gmql
	extend
	filter
	filter_and_extract
	group_by
	import_gmql
	init_gmql
	login_gmql
	logout_gmql
	log_job
	map
	merge
	OPERATOR-Object
	Ordering-Functions
	read_gmql
	register_gmql
	remote_processing
	run_query
	sample_metadata
	sample_region
	save_query
	select
	semijoin
	setdiff
	show_datasets_list
	show_jobs_list
	show_queries_list
	show_samples_list
	show_schema
	stop_gmql
	stop_job
	take
	union
	upload_dataset
	Index

