
Package ‘JunctionSeq’
January 23, 2020

Version 1.17.0

Title JunctionSeq: A Utility for Detection of Differential Exon and
Splice-Junction Usage in RNA-Seq data

Depends R (>= 3.2.2), methods, SummarizedExperiment (>= 0.2.0), Rcpp
(>= 0.11.0), RcppArmadillo (>= 0.3.4.4)

Imports DESeq2 (>= 1.10.0), statmod, Hmisc, plotrix, stringr, Biobase
(>= 2.30.0), locfit, BiocGenerics (>= 0.7.5), BiocParallel,
genefilter, geneplotter, S4Vectors, IRanges, GenomicRanges,

Suggests MASS, knitr, JctSeqData, BiocStyle

Enhances Cairo, pryr

Description A Utility for Detection and Visualization of Differential Exon or Splice-
Junction Usage in RNA-Seq data.

License file LICENSE

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

biocViews ImmunoOncology, Sequencing, RNASeq, DifferentialExpression

URL http://hartleys.github.io/JunctionSeq/index.html

BugReports https://github.com/hartleys/JunctionSeq/issues

Author Stephen Hartley [aut, cre] (PhD),
Simon Anders [cph],
Alejandro Reyes [cph]

Maintainer Stephen Hartley <JunctionSeq-contact@list.nih.gov>

git_url https://git.bioconductor.org/packages/JunctionSeq

git_branch master

git_last_commit b26ad83

git_last_commit_date 2019-10-29

Date/Publication 2020-01-22

1

http://hartleys.github.io/JunctionSeq/index.html
https://github.com/hartleys/JunctionSeq/issues

2 buildAllPlots

R topics documented:
buildAllPlots . 2
buildAllPlotsForGene . 9
defaultColorList . 14
estimateEffectSizes . 15
estimateJunctionSeqDispersions . 18
estimateJunctionSeqSizeFactors . 20
fitJunctionSeqDispersionFunction . 22
JunctionSeqCountSet-class . 24
plotDispEsts . 26
plotJunctionSeqResultsForGene . 29
plotMA . 34
readAnnotationData . 36
readJunctionSeqCounts . 37
runJunctionSeqAnalyses . 39
setJunctionSeqCompiledSourcePackage . 44
testForDiffUsage . 45
writeBedTrack . 47
writeCompleteResults . 50

Index 52

buildAllPlots Create and save a full battery of JunctionSeq expression plots.

Description

Saves a large battery of plots displaying the analysis results, for the purposes of data visualiza-
tion. By default it saves a full set of plots for every gene that shows statistical significance and
the adjusted-p < 0.01 level. Alternatively, it can be supplied with a specific gene list using the
gene.list parameter, and will plot those specific genes.

Note that this function has MANY parameters, allowing the user to tweak the appearance of the
plots to suit their particular needs and preferences. Don’t be daunted: the default parameters are
probably fine for most purposes.

Usage

buildAllPlots(jscs,
outfile.prefix = "./",
gene.list = NULL, FDR.threshold = 0.01, max.gene.ct,
method.selectionCriterion = c("feature-pAdjust", "genewise-pAdjust"),
use.plotting.device = c("png","CairoPNG","svg",

"tiff","cairo_ps","custom"),
sequencing.type = c("paired-end","single-end"),
use.vst=FALSE,use.log = TRUE,
exon.rescale.factor = 0.3,
subdirectories.by.type = TRUE,
ma.plot=TRUE, variance.plot=TRUE,
with.TX=TRUE,without.TX=TRUE,
expr.plot=TRUE,normCounts.plot=TRUE,
rExpr.plot=TRUE,rawCounts.plot=FALSE,

buildAllPlots 3

colorRed.FDR.threshold = FDR.threshold,
colorList=list(),
plot.gene.level.expression = TRUE,
plot.exon.results, plot.junction.results, plot.novel.junction.results,
plot.untestable.results = FALSE,
plot.lwd=3, axes.lwd = plot.lwd, anno.lwd = plot.lwd,
gene.lwd = plot.lwd / 2,
par.cex = 1, anno.cex.text = 1, anno.cex.axis = anno.cex.text,
anno.cex.main = anno.cex.text * 1.2,
drawCoordinates = TRUE,
yAxisLabels.inExponentialForm = FALSE,
show.strand.arrows = 1,
graph.margins = c(2, 3, 3, 3),
base.plot.height = 12, base.plot.width = 12,
base.plot.units = "in",
GENE.annotation.relative.height = 0.15,
TX.annotation.relative.height = 0.05,
CONNECTIONS.relative.height = 0.1,
SPLICE.annotation.relative.height = 0.1,
TX.margins = c(0,0.5),
autoscale.height.to.fit.TX.annotation = TRUE,
autoscale.width.to.fit.bins = 35,
plotting.device.params = list(),
number.plots = FALSE,
name.files.with.geneID = TRUE,
condition.legend.text, include.TX.names = TRUE,
draw.start.end.sites = TRUE,
openPlottingDeviceFunc, closePlottingDeviceFunc,
writeHTMLresults = TRUE,
html.cssFile, html.cssLink, html.imgFileExtension,
html.plot.height = 90, html.plot.height.units = "vh",
html.compare.results.list = NULL,
minimalImageFilenames = writeHTMLresults,
verbose=TRUE, debug.mode = FALSE,
INTERNAL.VARS = list(),
...)

Arguments

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. How-
ever in this case a number of additional steps will be necessary: Dispersions and
size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage. Effect sizes and parameter estimates must be created
via estimateEffectSizes.

outfile.prefix The prefix file path to save the images to.

gene.list Character vector. List of genes to plot. Either this variable OR FDR.threshold
must be set.

FDR.threshold If this option is used, genes will be selected for plotting based on the presence
of statistically significant junctions. The adjusted-p-value threshold used to de-

4 buildAllPlots

termine significance. Only genes containing at least 1 significant feature will be
plotted.

max.gene.ct Integer or numeric value. This option is usually only used with the FDR.threshold
parameter (as opposed to the gene.list parameter). This option sets an upper limit
to the number of genes to plot. This prevents JunctionSeq from taking too long
to complete, or from using too much disk space if an enormous number of genes
turn out to be significant at the selected significance value. If there are more
genes than max.gene.ct, then JunctionSeq will only plot the top max.gene.ct
genes.

method.selectionCriterion

Determines the method used to select genes for plotting. If set to "feature-
pAdjust", genes will be selected if one or more features show significance. If
"genewise-pAdjust" is used, gene-wise adjusted p-values will be generated and
genes will be filtered on that basis.

use.plotting.device

The plotting device to use.
sequencing.type

The type of sequencing used, either "paired-end" or "single-end". This only
affects the labelling of the y-axis, and does not affect the actual plots in any
way.

use.vst Logical. If TRUE, all plots will be scaled via a variance stabilizing transform.

use.log Logical. If TRUE, all plots will be log-scaled.
exon.rescale.factor

Floating point numeric value. To improve readability the exons drawn in the
coordinate annotation are rescaled by default so that they take up 30 percent of
the x axis. This makes the plots easier to read, as exons are usually much smaller
than introns and thus a group of clustered exons can be hard to distinguish when
plotted on a simple scale. If this value is set to NA or a value not between 0 and
1 inclusive, then the exons and introns will be drawn on the same scale. Note
that this function can also take the exonRescaleFunction parameter, which is
passed to plotJunctionSeqResultsForGene.

subdirectories.by.type

Logical value. If TRUE, then subdirectories will be created for each plot type
using outfile.prefix as a parent directory. Note that FALSE is not compatible with
some functionality, including HTML generation. For advanced users only.

ma.plot if TRUE, generate and save a MA plot. A MA-plot is a plot of fold change
versus base mean normalized counts.

variance.plot if TRUE, generate and save a plot of the dispersion as a function of the base
mean.

with.TX if TRUE, save expression plots with the full transcripts printed

without.TX if TRUE, save expression plots with only the compiled exons printed. Note that
if this and with.TX.plot are both TRUE, both versions will be saved seperately.

expr.plot if TRUE, save an expression plot of the expression parameter estimates for each
splice site, for each condition.

normCounts.plot

if TRUE, save an expression plot of the normalized mean counts for each splice
site, for each sample.

rExpr.plot if TRUE, save an expression plot of the expression parameter estimates, relative
to gene-wide expression, for each splice site, for each condition.

buildAllPlots 5

rawCounts.plot if TRUE, save an expression plot of the raw counts for each splice site, for each
sample. Note that these will never be VST-transformed, even when use.vst ==
TRUE.

colorRed.FDR.threshold

The adjusted-p-value threshold used to determine whether a feature should be
marked as "significant" and colored pink. By default this will be the same as the
FDR.threshold.

colorList A named list of R colors, setting the colors used for various things. See plotJunctionSeqResultsForGene

plot.gene.level.expression

Logical value. If TRUE, gene-level expression (when applicable) will be plotted
beside the sub-element-specific expression in a small seperate plotting box. For
the "relative expression" plots the simple mean normalized expression will be
plotted (since it doesn’t make sense to plot something relative to itself).

plot.exon.results

Logical. If TRUE, plot results for exons. By default everything that was tested
will be plotted.

plot.junction.results

Logical. If TRUE, plot results for splice junctions. By default everything that was
tested will be plotted.

plot.novel.junction.results

Logical. If TRUE, plot results for novel splice junctions. If false, novel splice
junctions will be ignored. By default everything that was tested will be plotted.

plot.untestable.results

Logical. If TRUE, plots splice junctions that had coverage that was too low to be
tested. Note that, in general, only normCounts and rawCounts plots will have
non-NA values for untestable counting bins.

plot.lwd The line width for the plotting lines.

axes.lwd The line width for the axes.

anno.lwd The line width for the various other annotation lines.

gene.lwd The line width used for the gene annotation lines. The default is half the standard
line width.

par.cex The base cex value to be passed to par() immediately before all plots are created.
See par.

anno.cex.text The font size multiplier for most annotation text. This will be multiplied by a
factor of the par.cex value. More specifically: The cex value to be passed to all
function calls that take graphical parameters. See par.

anno.cex.axis The font size multiplier for the axis text. This will be multiplied by a factor
of the par.cex value. More specifically: The cex.axis value to be passed to all
function calls that take graphical parameters. See par.

anno.cex.main The font size multiplier for the main title text. This will be multiplied by a factor
of the par.cex value. More specifically: The cex.main value to be passed to all
function calls that take graphical parameters. See par.

drawCoordinates

Whether to label the genomic coordinates at the bottom of the plot.

yAxisLabels.inExponentialForm

Logical. If TRUE, then the y-axis will be labelled in exponential form.

6 buildAllPlots

show.strand.arrows

The number of strand-direction arrows to display. If equal to 1 (the default) then
the arrow will extend from the end of the gene drawing, if it is greater than 1
then arrows will be drawn along the gene length. If it is 0 or NA then arrows will
not be drawn.

graph.margins Numeric vector of length 4. These margins values used (as if for par("mar")) for
the main graph. The lower part of the plot uses the same left and right margins.

base.plot.height

The base height of the standard-sized plots. Plots that include the full transcript
annotation will be expanded by the height of these additional rows. See the
withTxPlot.height.multiplier parameter, below.

base.plot.width

The width of the plots.
base.plot.units

The units of measurement for the plot height and width. Default is px, or pixels.
GENE.annotation.relative.height

The height of the "gene track" displayed underneath the main graph, relative to
the height of the main graph. By default it is 20 percent.

TX.annotation.relative.height

For all plots that draw the annotated-transcript set (when the with.TX parameter
is TRUE), this sets the height of each transcript, as a fraction of the height of the
main graph. By default it is 2.5 percent.

CONNECTIONS.relative.height

The height of the panel that connects the plotting area to the gene annotation
area, relative to the height of the plotting area. This panel has the lines that
connects the counting bin columns to their actual loci on the gene. By default it
is 10 percent.

SPLICE.annotation.relative.height

The height of the area that shows the splice junction loci, relative to the size of
the plotting area.

TX.margins A numeric vector of length 2. The size of the blank space between the gene plot
and the transcript list and then beneath the transcript list, relative to the size of
each transcript line.

autoscale.height.to.fit.TX.annotation

Logical. Plots that include the full transcript annotation generally need to have a
larger height in order to maintain readability. If TRUE) (the default), all plots that
include transcripts will be expanded vertically to fit the additional transcripts.
This maintains the same appearance and aspect ratio of the main graph area,
but means that the height of the plot will differ between genes when TX are
included. This parameter can be used to override that behavior if a specific
figure size is desired. If FALSE, then the height of the entire output image will
always be equal to base.plot.height.

autoscale.width.to.fit.bins

Integer value. JunctionSeq will automatically go to great lengths to autofit the
data in a readable way. By default, any plots that have more than 35 plotting
columns will be widened linearly to fit the excess columns. This parameter can
be used to change that value, or turn it off entirely by setting this parameter to
NA.

condition.legend.text

List or named vector of character strings. This optional parameter can be used to
assign labels to each condition variable values. It should be a list or named vec-
tor with length equal to factor(condition). Each element should be named

buildAllPlots 7

with one of the values from factor(condition), and should contain the label.
They will be listed in this order in the figure legend.

include.TX.names

Logical value. If TRUE, then for the plots that include the annotated transcript,
the transcript names will be listed. The labels will be drawn at half the size of
anno.cex.text.

plotting.device.params

Additional parameters to be passed to the plotting device.

number.plots Whether to number each gene in the image names, based on either the order they
appear in the input gene.list, or in order of ascending p-values.

name.files.with.geneID

Whether to use the geneID (rather than gene name) for naming the files.
draw.start.end.sites

Logical value. If TRUE, then transcript start/end sites will be marked on the main
gene annotation.

openPlottingDeviceFunc

An R function. This option can be used to use plotting devices other than the
ones directly supported by JunctionSeq. This must be a function that must have
3 parameters: filename, heightMult, and widthMult. It should open the desired
plotting device. For advanced users only.

closePlottingDeviceFunc

An R function. This must be used in conjunction with openPlottingDeviceFunc.
For most devices, you can just use the function "dev.off". For advanced users
only.

writeHTMLresults

If TRUE, write an index html file to present the results in a navigable way.

html.cssFile Optional: specify a css file to use. Copies the entire contents of the supplied file
into the page directory and links to it with relative links.

html.cssLink Optional: specify an external css file to use. This can be an absolute or relative
link.

html.imgFileExtension

The file extension of the image files. This is only needed if you are using a
custom device. If you are using one of the default devices, it will autodetect the
file extension.

html.plot.height

Numeric. The base height of the plot, for the plots without TX annotation. The
default is 90.

html.plot.height.units

The units used for the html.plot.height parameter. The default is "vh", which
sets the height relative to the available max height.

html.compare.results.list

Named list of character strings. (Advanced) Optional parameter that allows you
to cross-link multiple analyses for easy navigation between analysis for spe-
cific genes of interest. In order to create such cross-linking, you will need to run
builtAllPlots separately for each analysis. The outfile.prefix for each run
must be a sub-directory of the same parent directory. The html.compare.results.list
must be a named list of these subdirectories. names(html.compare.results.list)
must be the title of each analysis as you want it to appear in the navigation links.
Note: This parameter is incompatible with the number.plots option.

8 buildAllPlots

minimalImageFilenames

Logical. If TRUE, then the image files will not include the gene names, but
instead will be numbered in order. The html files will still have the full length
names. This option was added because many web host servers will refuse to
host image files whose length exceeds 32 characters. By default this option will
be TRUE iff writeHTMLresults is TRUE.

verbose if TRUE, send debugging and progress messages to the console / stdout.

debug.mode if TRUE, send even more debugging and progress messages to the console /
stdout.

INTERNAL.VARS NOT FOR GENERAL USE. Intended only for use by JunctionSeq itself, inter-
nally. This is used for passing pre-generated data (when generating many similar
plots, for example), and for internally-generated parameters. DO NOT USE.

... Additional options to pass to buildAllPlotsForGene, plotJunctionSeqResultsForGene,
or graphical parameters passed to plotting functions.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");
buildAllPlots(jscs);

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Generate all plots and the html index
Save them as pngs to the current directory:
buildAllPlots(jscs);

buildAllPlotsForGene 9

End(Not run)

buildAllPlotsForGene Create and save one or more JunctionSeq expression plots.

Description

Generates and saves one or more plots, displaying counts or averages for all counting bins across one
particular gene. The parameters expr.plot, normCounts.plot, rExpr.plot, and rawCounts.plot
determine which plot types are to be generated, and the parameters with.TX and without.TX deter-
mines whether these plots should include or not include the full transcript information, or if separate
plots should be generated with and without the full transcript information.

Note that this function has MANY parameters, allowing the user to tweak the behavior and ap-
pearance of the plots to suit their particular needs and preferences. Don’t be daunted: the default
parameters are probably fine for most purposes.

Usage

buildAllPlotsForGene(geneID, jscs,
outfile.prefix = "./",
use.plotting.device = c("png","CairoPNG","svg",

"tiff","cairo_ps","custom"),
sequencing.type = c("paired-end","single-end"),
use.vst=FALSE, use.log = TRUE,
exon.rescale.factor = 0.3,
with.TX=TRUE,without.TX=TRUE,
expr.plot=TRUE,normCounts.plot=TRUE,
rExpr.plot=TRUE,rawCounts.plot=FALSE,
colorRed.FDR.threshold = 0.01,
colorList=list(),
plot.gene.level.expression = TRUE,
plot.exon.results, plot.junction.results, plot.novel.junction.results,
plot.untestable.results = FALSE,
plot.lwd=3, axes.lwd = plot.lwd, anno.lwd = plot.lwd,
gene.lwd = plot.lwd / 2,
par.cex = 1, name.files.with.geneID = TRUE,
anno.cex.text = 1,
anno.cex.axis = anno.cex.text, anno.cex.main = anno.cex.text * 1.2,
drawCoordinates = TRUE,
yAxisLabels.inExponentialForm = FALSE,
show.strand.arrows = 1,
graph.margins = c(2, 3, 3, 3),
base.plot.height = 12, base.plot.width = 12,
base.plot.units = "in",
GENE.annotation.relative.height = 0.15,
TX.annotation.relative.height = 0.05,
CONNECTIONS.relative.height = 0.1,
SPLICE.annotation.relative.height = 0.1,
TX.margins = c(0,0.5),

10 buildAllPlotsForGene

autoscale.height.to.fit.TX.annotation = TRUE,
autoscale.width.to.fit.bins = 35,
plotting.device.params = list(),
condition.legend.text, include.TX.names = TRUE,
draw.start.end.sites = TRUE, draw.nested.SJ = TRUE,
openPlottingDeviceFunc = NULL, closePlottingDeviceFunc = NULL,
minimalImageFilenames = FALSE,
verbose=TRUE, debug.mode = FALSE,
INTERNAL.VARS=list(),
...)

Arguments

geneID Character string. Which gene to plot.

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. How-
ever in this case a number of additional steps will be necessary: Dispersions and
size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage. Effect sizes and parameter estimates must be created
via estimateEffectSizes.

outfile.prefix Character string or vector. Sets the prefix file path where image files should be
saved. If the destination directory does not exist then JunctionSeq will auto-
matically create it. If the parent directory does not exist then JunctionSeq will
throw an error. Optionally, outfile.prefix can be a vector of strings, assign-
ing a different file prefix to each plot. This alternative is primarily intended for
internal use by buildAllPlots.

use.plotting.device

The plotting device to use.
sequencing.type

The type of sequencing used, either "paired-end" or "single-end". This only
affects the labelling of the y-axis, and does not affect the actual plots in any
way.

use.vst Logical. If TRUE, all plots will be scaled via a variance stabilizing transform.

use.log Logical. If TRUE, all plots will be log-scaled.
exon.rescale.factor

Numeric. Exons will be proportionately scaled-up so that the exonic regions
make up this fraction of the horizontal plotting area. If negative, exons and
introns will be plotted to a common scale.

with.TX if TRUE, save expression plots with the full transcripts printed

without.TX if TRUE, save expression plots with only the compiled exons printed. Note that
if this and with.TX.plot are both TRUE, both versions will be saved seperately.

expr.plot if TRUE, save an expression plot of the expression parameter estimates for each
splice site, for each condition.

normCounts.plot

if TRUE, save an expression plot of the normalized mean counts for each splice
site, for each sample.

rExpr.plot if TRUE, save an expression plot of the expression parameter estimates, relative
to gene-wide expression, for each splice site, for each condition.

buildAllPlotsForGene 11

rawCounts.plot if TRUE, save an expression plot of the raw counts for each splice site, for each
sample. Note that these will never be VST-transformed, even when use.vst ==
TRUE.

colorRed.FDR.threshold

The adjusted-p-value threshold used to determine whether a feature should be
marked as "significant" and colored pink. By default this will be the same as the
FDR.threshold.

colorList A named list of R colors, setting the colors used for various things. See plotJunctionSeqResultsForGene

plot.gene.level.expression

Logical value. If TRUE, gene-level expression (when applicable) will be plotted
beside the sub-element-specific expression in a small seperate plotting box. For
the "relative expression" plots the simple mean normalized expression will be
plotted (since it doesn’t make sense to plot something relative to itself).

plot.exon.results

Logical. If TRUE, plot results for exons. By default everything that was tested
will be plotted.

plot.junction.results

Logical. If TRUE, plot results for splice junctions. By default everything that was
tested will be plotted.

plot.novel.junction.results

Logical. If TRUE, plot results for novel splice junctions. If false, novel splice
junctions will be ignored. By default everything that was tested will be plotted.

plot.untestable.results

Logical. If TRUE, plots splice junctions that had coverage that was too low to be
tested.

plot.lwd the line width for the plotting lines.

axes.lwd the line width for the axes.

anno.lwd the line width for the various other annotation lines.

gene.lwd the line width used for the gene annotation lines.

par.cex The base cex value to be passed to par() immediately before all plots are created.
See par.

name.files.with.geneID

Whether to use the geneID (rather than gene name) for naming the files.

anno.cex.text The font size multiplier for most annotation text. This will be multiplied by a
factor of the par.cex value. More specifically: The cex value to be passed to all
function calls that take graphical parameters. See par.

anno.cex.axis The font size multiplier for the axis text. This will be multiplied by a factor
of the par.cex value. More specifically: The cex.axis value to be passed to all
function calls that take graphical parameters. See par.

anno.cex.main The font size multiplier for the main title text. This will be multiplied by a factor
of the par.cex value. More specifically: The cex.main value to be passed to all
function calls that take graphical parameters. See par.

drawCoordinates

Whether to label the genomic coordinates at the bottom of the plot.

yAxisLabels.inExponentialForm

Logical. If TRUE, then the y-axis will be labelled in exponential form.

12 buildAllPlotsForGene

show.strand.arrows

The number of strand-direction arrows to display. If equal to 1 (the default) then
the arrow will extend from the end of the gene drawing, if it is greater than 1
then arrows will be drawn along the gene length. If it is 0 or NA then arrows will
not be drawn.

graph.margins Numeric vector of length 4. These margins values used (as if for par("mar")) for
the main graph. The lower part of the plot uses the same left and right margins.

base.plot.height

The base height of the standard-sized plots. Plots that include the full transcript
annotation will be expanded by the height of these additional rows. See the
withTxPlot.height.multiplier parameter, below.

base.plot.width

The base width of the plots (plots with a large number of features may be scaled
up, see parameter autoscale.width.to.fit.bins).

base.plot.units

The units of measurement for the plot height and width. Default is px, or pixels.
GENE.annotation.relative.height

The height of the "gene track" displayed underneath the main graph, relative to
the height of the main graph. By default it is 20 percent.

TX.annotation.relative.height

For all plots that draw the annotated-transcript set (when the with.TX parameter
is TRUE), this sets the height of each transcript, as a fraction of the height of the
main graph. By default it is 2.5 percent.

CONNECTIONS.relative.height

The height of the panel that connects the plotting area to the gene annotation
area, relative to the height of the plotting area. This panel has the lines that
connects the counting bin columns to their actual loci on the gene. By default it
is 10 percent.

SPLICE.annotation.relative.height

The height of the area that shows the splice junction loci, relative to the size of
the plotting area.

TX.margins A numeric vector of length 2. The size of the blank space between the gene plot
and the transcript list and then beneath the transcript list, relative to the size of
each transcript line.

autoscale.height.to.fit.TX.annotation

Plots that include the full transcript annotation generally need to have a larger
height in order to maintain readability. By default, all plots that include tran-
scripts will be expanded vertically by the height of the additional transcripts.
This maintains the same appearance and aspect ratio of the main graph, but also
means that the height of the plot will differ between genes. This parameter can
be used to override that behavior if a specific figure size is desired. If TRUE,
the base.plot.height will be used as the height of the plot, regardless of how
many transcripts are included.

autoscale.width.to.fit.bins

Integer value. JunctionSeq will automatically go to great lengths to autofit the
data in a readable way. By default, any plots that have more than 35 plotting
columns will be widened linearly to fit the excess columns. This parameter can
be used to change that value, or turn it off entirely by setting this parameter to
NA.

plotting.device.params

Additional parameters to be passed to the plotting device.

buildAllPlotsForGene 13

condition.legend.text

List or named vector of character strings. This optional parameter can be used to
assign labels to each condition variable values. It should be a list or named vec-
tor with length equal to factor(condition). Each element should be named
with one of the values from factor(condition), and should contain the label.
They will be listed in this order in the figure legend.

include.TX.names

Logical value. If TRUE, then for the plots that include the annotated transcript,
the transcript names will be listed. The labels will be drawn at half the size of
anno.cex.text.

draw.start.end.sites

Logical value. If TRUE, then transcript start/end sites will be marked on the main
gene annotation.

draw.nested.SJ Logical. If TRUE, overlapping splice junctions will be drawn layered under one
another. This can vastly improve readability when there are a large number of
overlapping splice junctions. Default is TRUE.

openPlottingDeviceFunc

An R function. This option can be used to use plotting devices other than the
ones directly supported by JunctionSeq. This must be a function that must have
3 parameters: filename, heightMult, and widthMult. It should open the desired
plotting device. For advanced users only.

closePlottingDeviceFunc

An R function. This must be used in conjunction with openPlottingDeviceFunc.
For most devices, you can just use the function "dev.off". For advanced users
only.

minimalImageFilenames

Logical. If TRUE, then the image files will not include the gene names. By default
this is FALSE, but may be set to TRUE when this function is called internally by
buildAllPlots using the default options. This option is sometimes needed so
that the image files are compatible with certain web hosts that have file name
length restrictions.

verbose if TRUE, send debugging and progress messages to the console / stdout.

debug.mode if TRUE, send even more debugging and progress messages to the console /
stdout.

INTERNAL.VARS NOT FOR GENERAL USE. Intended only for use by JunctionSeq itself, inter-
nally. This is used for passing pre-generated data (when generating many similar
plots, for example), and for internally-generated parameters. DO NOT USE.

... Additional options to pass to plotJunctionSeqResultsForGene, or graphical
parameters passed to plotting functions.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");
buildAllPlotsForGene(geneID = "ENSRNOG00000009281", jscs);

Not run:
##

14 defaultColorList

#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Generate several related plots for the selected gene:
buildAllPlotsForGene(geneID = "ENSRNOG00000009281", jscs);

End(Not run)

defaultColorList JunctionSeq Color Parameters

Description

This data set specifies some of the default color and style parameters for JunctionSeq. Any of these
parameters can be overridden by using the colorList parameter in buildAllPlots, buildAllPlotsForGene,
or plotJunctionSeqResultsForGene.

Usage

JUNCTIONSEQ.DEFAULT.COLOR.LIST

Format

A list.

Details

The parameter colorList must be a named list. Any elements with the names listed below will
override the default JunctionSeq colors.

SIG.FEATURE.COLOR The color of vertical lines in the plotting panel, for significant features.

estimateEffectSizes 15

NOSIG.FEATURE.COLOR The color of vertical lines in the plotting panel, for tested but non-significant
features.

UNTESTABLE.FEATURE.COLOR The color of vertical lines in the plotting panel, for untestable fea-
tures.

EXCLUDED.FEATURE.COLOR The color of vertical lines in the plotting panel, for features that were
not part of the analysis (for example: splice junctions in an exon-based analysis).

SIG.VERTLINE.COLOR,NOSIG.VERTLINE.COLOR,UNTESTABLE.VERTLINE.COLOR: The colors of the
vertical dotted lines in the plotting panel.

SIG.FEATURE.BORDER.COLOR, NOSIG.FEATURE.BORDER.COLOR, UNTESTABLE.FEATURE.BORDER.COLOR,
EXCLUDED.FEATURE.BORDER.COLOR: The color for borders of features in the gene and transcript an-
notation.

SIG.FEATURE.FILL.COLOR, NOSIG.FEATURE.FILL.COLOR, UNTESTABLE.FEATURE.FILL.COLOR, EXCLUDED.FEATURE.FILL.COLOR
The colors for exon shading in the gene and transcript annotation.

KNOWN.SPLICE.LTY, NOVEL.SPLICE.LTY: These set the "lty" parameter for the known and novel
splice junction diagrams. These must be specified as one of the character specifications. In other
words, either a descriptive specification like "solid","dotted",etc., or by an even number of nonzero
hexadecimal digits. See the section "Line Type Specification" in the graphical parameters help
(linkpar). You CANNOT use the single-digit index specification, as this will fail when used in vector
form with the others (technically you could use them, but only if you reset ALL lty parameters).

EXON.CONNECTION.LTY, NOVEL.SPLICE.CONNECTION.LTY, KNOWN.SPLICE.CONNECTION.LTY: The
"lty" parameters for the lines that connect the features on the gene schematic diagram to the plotting
panel. These have the same requirements as the previous set of lty parameters.

PLOTTING.LINE.COLORS Character vector. The colors for each condition, in order. Will be short-
ened to the number of conditions.

Value

See above.

Examples

data(exampleDataSet,package="JctSeqData");

#Set a few alternative colors:
buildAllPlotsForGene(geneID = "ENSRNOG00000009281", jscs,

outfile.prefix = "./oddColors.",
colorList = list(SIG.FEATURE.COLOR = "red",

SIG.FEATURE.FILL.COLOR = "green",
NOSIG.FEATURE.FILL.COLOR = "blue"
));

estimateEffectSizes Estimate Effect Sizes, parameter estimates, etc.

Description

This function runs fits another generalized linear model to the data, this one intended for use in
estimating the effect sizes and expression estimates for each analysis.

This function is called internally by the runJunctionSeqAnalyses function, and thus for most
purposes users should not need to call this function directly. It may be useful to advanced users
performing non-standard analyses.

16 estimateEffectSizes

Usage

estimateEffectSizes(jscs,
method.expressionEstimation = c("feature-vs-gene",

"feature-vs-otherFeatures"),
effect.formula = formula(~ condition + countbin + condition : countbin),
geneLevel.formula = formula(~ condition),
calculate.geneLevel.expression = TRUE,
keep.estimation.fit = FALSE,
nCores=1,
dispColumn="dispersion",
verbose = TRUE)

Arguments

jscs A JunctionSeqCountSet. Usually initially created by readJunctionSeqCounts.
Size factors must be set, usually using functions estimateSizeFactors and
estimateJunctionSeqDispersions.

method.expressionEstimation

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the methodology used to generate feature expression estimates and
relative fold changes. By default each feature is modeled separately. Under the
default count-vector method, this means that the resultant relative fold changes
will be a measure of the relative fold change between the feature and the gene
as a whole.
Alternatively, the "feature-vs-otherFeatures" method builds a large, complex
model containing all features belonging to the gene. The coefficients for each
feature are then "balanced" using linear contrasts weighted by the inverse of
their variance. In general we have found this method to produce very similar
results but less efficiently and less consistently. Additionally, this alternative
method "multi-counts" reads that cover more than one feature. This can result
in over-weighting of exonic regions with a large number of annotated variations
in a small genomic area, as each individual read or read-pair may be counted
many times in the model.
Under the default option, no read or read-pair is ever counted more than once in
a given model.

effect.formula For advanced users. The base formula for the model used for effect size estima-
tion.
NOTE: the biological condition to be tested must be named "condition".

geneLevel.formula

For advanced users. The base formula for the model used to estimate total gene-
level expression.
NOTE: the biological condition to be tested must be named "condition".

calculate.geneLevel.expression

Logical value. If TRUE, gene-level expression will be estimated using the same
maximum-likelihood method used in other analyses. Default: TRUE.

keep.estimation.fit

Logical value. If TRUE, save the complete model fits for every gene. This will
require a lot of memory, but may be useful for statistical diagnostics. Default:
FALSE.

estimateEffectSizes 17

nCores Either an integer or a BiocParallelParam object. Either way, this determines The
number of cores to use. Note that multicore functionality may not be available
on all platforms. If parallel execution is not available then JunctionSeq will
automatically fallback to single-core execution. See the BiocParallel package
for more information.

dispColumn Character value. The name of the fData(jscs) column in which the model
dispersion is stored.

verbose if TRUE, send debugging and progress messages to the console / stdout.

Value

A JunctionSeqCountSet, with effect size results included.

Examples

data(exampleDataSet,package="JctSeqData");
jscs <- estimateEffectSizes(jscs);

Not run:
#Full example (from scratch):

##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Advanced Analysis:

#Make a "design" dataframe:
design <- data.frame(condition = factor(decoder$group.ID));
#Read the QoRTs counts.
jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file

);
#Generate the size factors and load them into the JunctionSeqCountSet:
jscs <- estimateJunctionSeqSizeFactors(jscs);
#Estimate feature-specific dispersions:
jscs <- estimateJunctionSeqDispersions(jscs);
#Fit dispersion function and estimate MAP dispersion:
jscs <- fitJunctionSeqDispersionFunction(jscs);
#Test for differential usage:
jscs <- testForDiffUsage(jscs);
#Estimate effect sizes and expression estimates:

18 estimateJunctionSeqDispersions

jscs <- estimateEffectSizes(jscs);

End(Not run)

estimateJunctionSeqDispersions

JunctionSeq Dispersion Estimation

Description

This method estimates the sample dispersion for each counting bin (in other words, each splice
junction locus).

This function is called internally by the runJunctionSeqAnalyses function, and thus for most
purposes users should not need to call this function directly. It may be useful to advanced users
performing non-standard analyses.

Usage

estimateJunctionSeqDispersions(jscs,
method.GLM = c(c("advanced","DESeq2-style"),

c("simpleML","DEXSeq-v1.8.0-style")),
test.formula1 = formula(~ sample + countbin + condition : countbin),
meanCountTestableThreshold="auto", nCores=1,
use.multigene.aggregates = FALSE,
verbose = TRUE)

Arguments

jscs A JunctionSeqCountSet. Usually initially created by readJunctionSeqCounts.
Size factors must be set, usually using functions estimateSizeFactors and
estimateJunctionSeqDispersions.

method.GLM Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
The default is "advanced" or, equivalently, "DESeq2-style". This uses the dis-
persion estimation methodology used by DESeq2 and DEXSeq v1.12.0 or higher
to generate the initial (feature-specific) dispersion estimates. The alternative
method is "simpleML" or, equivalently, "DEXSeq-v1.8.0-style". This uses a
simpler maximum-likelihood-based method used by the original DESeq and by
DEXSeq v1.8.0 or less.

test.formula1 The model formula. Note that this formula is different from the formula used
to calculate parameter estimates and effect size. This is because the two noise
components (gene-level and countbin-level noise) are folded into the sample
term. Since we only intend to test the condition-countbin interaction, we do not
need to model the gene-level differential expression.
NOTE: the biological condition to be tested MUST be named "condition".

estimateJunctionSeqDispersions 19

meanCountTestableThreshold

"auto" or Numeric value. Features with a total mean normalized count of less
than this value will be excluded from the analyses. If left as the default ("auto"),
then the cutoff threshold will be determined automatically using the DESeq2
independent filtering method.

nCores Either an integer or a BiocParallelParam object. Either way, this determines The
number of cores to use. Note that multicore functionality may not be available
on all platforms. If parallel execution is not available then JunctionSeq will
automatically fallback to single-core execution. See the BiocParallel package
for more information.

use.multigene.aggregates

Logical value. Whether to attempt to test "aggregate genes" which consist of
multiple genes that overlap with one another. Note that inclusion of aggregate
genes may affect the false discovery rate, since by their very nature aggregate
genes will often show differential splice junction usage, as the two genes will
often be regulated independently.

verbose A boolean flag indicating whether or not to print progress information during
execution. (Default=FALSE)

Value

A JunctionSeqCountSet, with dispersion results included.

Examples

Not run:
#Full example (from scratch):
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Advanced Analysis:

#Make a "design" dataframe:
design <- data.frame(condition = factor(decoder$group.ID));
#Read the QoRTs counts.
jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file

);
#Generate the size factors and load them into the JunctionSeqCountSet:
jscs <- estimateJunctionSeqSizeFactors(jscs);

20 estimateJunctionSeqSizeFactors

#Estimate feature-specific dispersions:
jscs <- estimateJunctionSeqDispersions(jscs);
#Fit dispersion function and estimate MAP dispersion:
jscs <- fitJunctionSeqDispersionFunction(jscs);
#Test for differential usage:
jscs <- testForDiffUsage(jscs);
#Estimate effect sizes and expression estimates:
jscs <- estimateEffectSizes(jscs);

End(Not run)

estimateJunctionSeqSizeFactors

Estimate Size Factors

Description

Estimate size factors, which are scaling factors used as "offsets" by the statistical model to make
the different samples comparable. This is necessary because the different samples may have been
sequenced to slightly different depths. Additionally, the presence of differentially expressed genes
may cause the apparent depth of many genes to appear different.

This function uses the "geometric" size factor normalization method, which is identical to the one
used by DESeq, DESeq2, DEXSeq, and the default method used by CuffDiff.

This function is called internally by the runJunctionSeqAnalyses function, and thus for most
purposes users should not need to call this function directly. It may be useful to advanced users
performing non-standard analyses.

Usage

estimateJunctionSeqSizeFactors(jscs,
method.sizeFactors = c("byGenes","byCountbins"),
replicateDEXSeqBehavior.useRawBaseMean = FALSE,
calcAltSF = TRUE,
verbose = FALSE);

writeSizeFactors(jscs, file);

Arguments

jscs A JunctionSeqCountSet. Usually initially created by readJunctionSeqCounts.
Size factors must be set, usually using functions estimateSizeFactors and
estimateJunctionSeqDispersions.

method.sizeFactors

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the method used to calculate normalization size factors. By default
JunctionSeq uses gene-level expression. As an alternative, feature-level counts
can be used as they are in DEXSeq. In practice the difference is almost always
negligible.

estimateJunctionSeqSizeFactors 21

replicateDEXSeqBehavior.useRawBaseMean

USED ONLY FOR INTERNAL TESTING! NOT INTENDED FOR ACTUAL
USE!
This variable activates an alternative mode in which a (very minor) bug in DEXSeq
v1.14.0 and earlier is replicated. If TRUE, the baseMean and baseVar variables
will be computed using raw counts rather than normalized counts. This is used
for internal tests in which DEXSeq functionality is replicated precisely and the
results are compared against equivalent DEXSeq results. Without this option the
results would differ slightly (generally by less than 1 hundreth of a percent).
USED ONLY FOR INTERNAL TESTING! NOT INTENDED FOR ACTUAL
USE!

calcAltSF Logical. Determines whether both types of size factor calculations should be
generated, and placed in the jscs@altSizeFactors slot.

verbose if TRUE, send debugging and progress messages to the console / stdout.

file A file path to write the size factor table.

... If using the (depreciated) estimateSizeFactors command, use the same syntax as
above.

Value

A JunctionSeqCountSet, with size factors included.

Examples

data(exampleDataSet,package="JctSeqData");
jscs <- estimateJunctionSeqSizeFactors(jscs);

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Advanced Analysis:

#Make a "design" dataframe:
design <- data.frame(condition = factor(decoder$group.ID));
#Read the QoRTs counts.
jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file

22 fitJunctionSeqDispersionFunction

);
#Generate the size factors and load them into the JunctionSeqCountSet:
jscs <- estimateJunctionSeqSizeFactors(jscs);
#Estimate feature-specific dispersions:
jscs <- estimateJunctionSeqDispersions(jscs);
#Fit dispersion function and estimate MAP dispersion:
jscs <- fitJunctionSeqDispersionFunction(jscs);
#Test for differential usage:
jscs <- testForDiffUsage(jscs);
#Estimate effect sizes and expression estimates:
jscs <- estimateEffectSizes(jscs);

End(Not run)

fitJunctionSeqDispersionFunction

Fit Shared Dispersion Function

Description

Fit dispersion function to share dispersion information between features across the genome.

This function is called internally by the runJunctionSeqAnalyses function, and thus for most
purposes users should not need to call this function directly. It may be useful to advanced users
performing non-standard analyses.

Usage

fitJunctionSeqDispersionFunction(jscs,
method.GLM = c(c("advanced","DESeq2-style"),

c("simpleML","DEXSeq-v1.8.0-style")),
method.dispFit = c("parametric", "local", "mean"),
method.dispFinal = c("shrink","max","fitted","noShare"),
fitDispersionsForExonsAndJunctionsSeparately = TRUE,
verbose = TRUE)

Arguments

jscs A JunctionSeqCountSet. Usually initially created by readJunctionSeqCounts.
Size factors must be set, usually using functions estimateSizeFactors and
estimateJunctionSeqDispersions.

method.GLM Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
The default is "advanced" or, equivalently, "DESeq2-style". This uses the dis-
persion estimation methodology used by DESeq2 and DEXSeq v1.12.0 or higher
to generate the initial (feature-specific) dispersion estimates. The alternative
method is "simpleML" or, equivalently, "DEXSeq-v1.8.0-style". This uses a
simpler maximum-likelihood-based method used by the original DESeq and by
DEXSeq v1.8.0 or less.

fitJunctionSeqDispersionFunction 23

method.dispFit Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the method used to generated "fitted" dispersion estimates. One of
"parametric" (the default), "local", or "mean". See the DESeq2 documentation
for more information.

method.dispFinal

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the method used to arrive at a "final" dispersion estimate. The de-
fault, "shrink" uses the maximum a posteriori estimate, combining information
from both the fitted and feature-specific dispersion estimates. This is the method
used by DESeq2 and DEXSeq v1.12.0 and above.

fitDispersionsForExonsAndJunctionsSeparately

When running a "junctionsAndExons" type analysis in which both exons and
splice junctions are being tested simultaniously, this parameter determines whether
a single fitted dispersion model should be fitted for both exons and splice junc-
tions, or if separate fitted dispersions should be calculated for each. By default
the dispersions are run separately.

verbose if TRUE, send debugging and progress messages to the console / stdout.

... If using the depreciated fitDispersionFunction command, use the same syntax
as above.

Value

A JunctionSeqCountSet, with dispersion results included.

Examples

data(exampleDataSet,package="JctSeqData");
jscs <- fitJunctionSeqDispersionFunction(jscs);

Not run:
#Full example (from scratch):
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Advanced Analysis:

#Make a "design" dataframe:

24 JunctionSeqCountSet-class

design <- data.frame(condition = factor(decoder$group.ID));
#Read the QoRTs counts.
jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file

);
#Generate the size factors and load them into the JunctionSeqCountSet:
jscs <- estimateJunctionSeqSizeFactors(jscs);
#Estimate feature-specific dispersions:
jscs <- estimateJunctionSeqDispersions(jscs);
#Fit dispersion function and estimate MAP dispersion:
jscs <- fitJunctionSeqDispersionFunction(jscs);
#Test for differential usage:
jscs <- testForDiffUsage(jscs);
#Estimate effect sizes and expression estimates:
jscs <- estimateEffectSizes(jscs);

End(Not run)

JunctionSeqCountSet-class

Class "JunctionSeqCountSet"

Description

A JunctionSeqCountSet is a container class that contains all information pertaining to a Junc-
tionSeq analysis and dataset. In general, these methods and slots will not be used by the end-
users. In general, JunctionSeqCountSet objects will be created by readJunctionSeqCounts or
runJunctionSeqAnalyses and are to be manipulated byhigh-level JunctionSeq functions such as
estimateEffectSizes or fitJunctionSeqDispersionFunction.

The methods documented here are for use by advanced users only.

Details

Slots:

designColumns A character vector with the column names in the design data.frame.

dispFitCoefs The dispersion fit coefficients.

fittedMu Fitted mu values generated by DESeq2 code.

dispFunctionType A list of various variables defining the dispersion functon used.

dispFunction A function that converts a base mean to a fitted dispersion based on all included
count bins.

dispFunctionJct A function that converts a base mean to a fitted dispersion based only on the
splice junction bins.

dispFunctionExon A function that converts a base mean to a fitted dispersion based only on the
exon bins.

formulas A list of formulas used.

annotationFile The annotation file.

JunctionSeqCountSet-class 25

geneCountData A matrix of the gene-level counts

countVectors A matrix of the count vectors.

altSizeFactors (Not currently used)

plottingEstimates A list of fitted estimates, for plotting.

plottingEstimatesVST (Not currently used)

geneLevelPlottingEstimates A list of gene-level fitted estimates, for plotting.

modelFitForHypothesisTest (Not currently used)

modelFitForEffectSize (Not currently used)

flatGffData A data.frame representation of the flattened gff annotation for each countbin.

flatGffGeneData A data.frame representation of the flattened gff annotation for each gene.

analysisType The type of analysis. Character string.

DESeqDataSet The specially-constructed DESeqDataSet, to be passed to the internally-loaded DE-
Seq2 code.

modelCoefficientsSample: Object of class "list". Placeholder slot for model coefficients (used
for diagnostic testing of code).

modelCoefficientsGene: Object of class "list". Placeholder slot for model coefficients (used
for diagnostic testing of code).

assayData: Object of class "AssayData". Contains various data.

phenoData: Object of class "AnnotatedDataFrame". Phenotype data.

featureData: Object of class "AnnotatedDataFrame". Counting bin data.

experimentData: Object of class "MIAxE". Information on the experiment.

annotation: Object of class "character". Not used.

protocolData: Object of class "AnnotatedDataFrame". Information on the code.

.__classVersion__: Object of class "Versions". The version of the JunctionSeqCountSet.

Constructor

newJunctionSeqCountSet(countData,geneCountData,design,geneIDs,countbinIDs,featureIntervals=NULL,transcripts=NULL):
Creates a new JunctionSeqCountSet

countData A matrix of junction-level count data of non-negative integer values. The rows
correspond to counts for each splice-junction counting bin, the columns correspond to
samples. Note that biological replicates should each get their own column, while the
counts of technical replicates (i.e., several sequencing runs/lanes from the same sample)
should be summed up into a single column.

geneCountData A matrix of gene-level count data of non-negative integer values. The rows
correspond to counts for each gene, the columns correspond to samples. Note that biolog-
ical replicates should each get their own column, while the counts of technical replicates
(i.e., several sequencing runs/lanes from the same sample) should be summed up into a
single column. Must have the same dimensions as countData.

design A data frame consisting of all factors to be included in the analysis. All columns
should be factors. Each column should represent a different variable, each row should
represent a different sample. The number of rows must equal the number of columns in
geneCountData and countData.

geneIDs A character vector of gene indentifiers for each splice junction. The length must
equal the number of rows in countData.

26 plotDispEsts

countbinIDs A character vector of splice-junction-locus indentifiers for each splice junction.
The length must equal the number of rows in countData.

featureIntervals Optional. A data.frame with 4 columns: "chr", "start", "end", and "strand".
chr and strand should be character vectors or factors, start and end must be integers.

transcripts Optional. Character vector listing the transcripts that each splice junction be-
longs to. Some junctions may belong to more than one transcripts. In this case, transcripts
should be separated with the "+" character.

This constructor function SHOULD NOT BE USED in normal operation. Instead you should
use the readJunctionSeqCounts function, which returns a new JunctionSeqCountSet.

Extends

Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned",
by class "eSet", distance 3.

Note

End-users generally will not use any of these slots or methods directly. However, they may be useful
for model fit diagnostics and similar statistical experimentation.

You can access method-mode information using the "AltMethods" attribute, and a list of all calls
using the "callStack" attribute.

Author(s)

Stephen Hartley

See Also

The proper way to create a JunctionSeqCountSet is to use readJunctionSeqCounts or runJunctionSeqAnalyses.

Examples

showClass("JunctionSeqCountSet")

plotDispEsts Plot Fitted and Test-wise Dispersion

Description

Plots the countbin-specific estimated dispersion and the fitted dispersion curve.

Usage

plotDispEsts(jscs, ylim, xlim,
linecol=c("#0000FF","#FF0000"),
pointcol = c("#00009980","#99000080"),
title.main = "Dispersion Estimates",
xlab = "Mean Normalized Coverage",
ylab = "Dispersion",
miniTicks = TRUE,
pch.MLE = 46, pch.MAP = 1, lwd.fitted = 2,

plotDispEsts 27

par.cex = 1, points.cex = 1, text.cex = 1, lines.cex = 8,
use.smoothScatter = FALSE, smooth.nbin = 512, nrpoints = 100,
plot.exon.results = TRUE,
plot.junction.results = TRUE,
anno.lwd = 2,
mar = c(4.1,4.1,3.1,1.1),
show.legends = TRUE,
verbose = TRUE, debug.mode = FALSE,
...)

Arguments

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. Dis-
persions and size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage.

ylim The plotting range for the y-axis.

xlim The plotting range for the x-axis.

linecol Character vector of length 2. The line color to use for the fit line. If the fits were
performed separately for exons and junctions, the junction line will be drawn
with the second color.

pointcol Character vector of length 2. The point color to use for the final dispersions. If
the fits were performed separately for exons and junctions, the junction points
will be drawn with the second color.

title.main The main title of the plot.

xlab The label for the x-axis.

ylab The label for the y-axis.

miniTicks Whether or not to plot smaller ticks at the tenth-decades.

par.cex The base cex value to be passed to par() immediately before all plots are created.
See par.

points.cex The character expansion value for the plotted points.

text.cex The character expansion value for the annotation text (labels, etc).

lines.cex The character expansion value for lines. What this means seems to vary depend-
ing on the plotting device.

pch.MLE Numeric. The pch code for the MLE (ie single-feature) dispersion estimate. The
default is a small point.

pch.MAP Numeric. The pch code for the MAP (ie. final) dispersion estimate. The default
is a circle.

lwd.fitted Numeric. The width of the dispersion fit line(s).
use.smoothScatter

Logical. If TRUE, features will be ploted with density shading rather than hav-
ing each point plotted.

smooth.nbin The number of bins to smooth, for the density plot, if use.smoothScatter is
TRUE.

nrpoints The number of extra points to plot, if use.smoothScatter is TRUE.

28 plotDispEsts

plot.exon.results

Logical. If TRUE, plot results for exons. Technically speaking, JunctionSeq
can be used to do DEXSeq-style analyses on exon partitions. However this
functionality is for advanced users only.

plot.junction.results

Logical. If TRUE, plot results for splice junctions. For advanced users only.
anno.lwd The lwd value to be passed to lines, box, axis, and similar.
mar The margin sizes, expressed in lines. see link{par}.
show.legends Logical. If TRUE, display legends.
verbose if TRUE, send debugging and progress messages to the console / stdout.
debug.mode if TRUE, send even more debugging and progress messages to the console / std-

out.
... Additional options to pass to plotting functions, particularly graphical parame-

ters.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");
plotDispEsts(jscs);

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

######################
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Plot dispersions:
plotDispEsts(jscs);

End(Not run)

plotJunctionSeqResultsForGene 29

plotJunctionSeqResultsForGene

Generate a JunctionSeq expression plot.

Description

Creates one results plot for one gene. Note that this function does not call a plotting device, so
it will simply plot to the "current" device. If you want to automatically save images to file, use
buildAllPlotsForGene, which internally calls this function.

Note that this function has MANY parameters, allowing the user to tweak the appearance of the
plots to suit their particular needs and preferences. Don’t be daunted: the default parameters are
probably fine for most purposes.

Usage

plotJunctionSeqResultsForGene(geneID, jscs,
colorRed.FDR.threshold=0.01,
plot.type = c("expr","normCounts","rExpr","rawCounts"),
sequencing.type = c("paired-end","single-end"),
displayTranscripts = FALSE,
colorList = list(),
use.vst = FALSE, use.log = TRUE,
exon.rescale.factor = 0.3,
exonRescaleFunction = c("sqrt","log","linear","34root"),
label.p.vals = TRUE,
plot.lwd = 3, axes.lwd = plot.lwd,
anno.lwd = plot.lwd, gene.lwd = plot.lwd / 2,
par.cex = 1, anno.cex.text = 1,
anno.cex.axis=anno.cex.text, anno.cex.main = anno.cex.text * 1.2,
cex.arrows = "auto",
fit.countbin.names = TRUE, fit.genomic.axis = TRUE, fit.labels = TRUE,
plot.gene.level.expression = TRUE,
plot.exon.results, plot.junction.results, plot.novel.junction.results,
plot.untestable.results = FALSE, draw.untestable.annotation = TRUE,
show.strand.arrows = 1,
sort.features = TRUE,
drawCoordinates = TRUE,
yAxisLabels.inExponentialForm = FALSE,
title.main, title.ylab, title.ylab.right,
graph.margins = c(2, 3, 3, 3),
GENE.annotation.relative.height = 0.15,
TX.annotation.relative.height = 0.05,
CONNECTIONS.relative.height = 0.1,
SPLICE.annotation.relative.height = 0.1,
TX.margins = c(0,0.5),
condition.legend.text = NULL, include.TX.names = TRUE,
draw.start.end.sites = TRUE,
label.chromosome = TRUE,
splice.junction.drawing.style = c("hyperbola","ellipse",

"triangular","line"),

30 plotJunctionSeqResultsForGene

draw.nested.SJ = TRUE, merge.exon.parts = TRUE,
verbose=TRUE, debug.mode = FALSE,
INTERNAL.VARS = list(),
...)

Arguments

geneID Character string. The gene to the plotted.

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. How-
ever in this case a number of additional steps will be necessary: Dispersions and
size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage. Effect sizes and parameter estimates must be created
via estimateEffectSizes.

colorRed.FDR.threshold

The adjusted-p-value threshold used to determine whether a feature should be
marked as "significant" and colored pink. By default this will be the same as the
FDR.threshold.

plot.type Character string. Determines which plot to produce. Options are: "expr" for "ex-
pression", or mean normalized read counts by experimental condition, "rExpr"
for "relative" expression relative to gene-level expression, "normCounts" for
normalized read counts for each sample, and "rawCounts" for raw read counts
for each sample.

sequencing.type

The type of sequencing used, either "paired-end" or "single-end". This only
affects the labelling of the y-axis, and does not affect the actual plots in any
way.

displayTranscripts

Logical. If true, then the full set of annotated transcripts will be displayed below
the expression plot (to a maximum of 42 different TX).

colorList A named list of R colors, setting the colors used for various things. See junctionSeqColors
for more information.

use.vst Logical. If TRUE, all plots will be scaled via a variance stabilizing transform.

use.log Logical. If TRUE, all plots will be log-scaled.
exon.rescale.factor

Numeric. Exons will be proportionately scaled-up so that the exonic regions
make up this fraction of the horizontal plotting area. If negative, exons and
introns will be plotted to a common scale.

exonRescaleFunction

Character string. Exonic and intronic regions will be rescaled to be propor-
tional to this transformation of their span. By default the square-root function
is used, which shrinks long features and extends short features so that they are
all still readable and destinguishable against one another. This default option
seems to behave well on mammalian genomes. This parameter does nothing if
exon.rescale.factor is negative.

label.p.vals Logical. If TRUE, then statistically significant p-values will be labelled.

plot.lwd the line width for the plotting lines.

axes.lwd the line width for the axes.

plotJunctionSeqResultsForGene 31

anno.lwd the line width for the various other annotation lines.

gene.lwd the line width used for the gene annotation lines.

par.cex The base cex value to be passed to par() immediately before all plots are created.
See par.

anno.cex.text The font size multiplier for most annotation text. This will be multiplied by a
factor of the par.cex value. More specifically: The cex value to be passed to all
function calls that take graphical parameters. See par.

anno.cex.axis The font size multiplier for the axis text. This will be multiplied by a factor
of the par.cex value. More specifically: The cex.axis value to be passed to all
function calls that take graphical parameters. See par.

anno.cex.main The font size multiplier for the main title text. This will be multiplied by a factor
of the par.cex value. More specifically: The cex.main value to be passed to all
function calls that take graphical parameters. See par.

cex.arrows The font size for the strand-direction arrows in the gene annotation region. The
arrows will be sized to equal the dimensions of the letter "M" at this font size.

fit.countbin.names

Logical. If TRUE, then splice-junction-locus labels should be rescaled to fit in
whatever horizontal space is available.

fit.genomic.axis

Logical. If TRUE, then the genomic coordinate labels will be auto-scaled down
to fit, if needed.

fit.labels Logical. If TRUE, then y-axis labels will be auto-scaled down to fit, if needed.
Note this only applies to the text labels, not the numeric scales.

plot.gene.level.expression

Logical value. If TRUE, gene-level expression (when applicable) will be plotted
beside the sub-element-specific expression in a small seperate plotting box. For
the "relative expression" plots the simple mean normalized expression will be
plotted (since it doesn’t make sense to plot something relative to itself).

plot.exon.results

Logical. If TRUE, plot results for exons. By default everything that was tested
will be plotted.

plot.junction.results

Logical. If TRUE, plot results for splice junctions. By default everything that was
tested will be plotted.

plot.novel.junction.results

Logical. If TRUE, plot results for novel splice junctions. If false, novel splice
junctions will be ignored. By default everything that was tested will be plotted.

plot.untestable.results

Logical. If TRUE, plots the expression of splice junctions that had coverage that
was too low to be tested.

draw.untestable.annotation

Logical. If TRUE, draws the annotation for splice junctions that had coverage
that was too low to be tested.

show.strand.arrows

The number of strand-direction arrows to display. If equal to 1 (the default) then
the arrow will extend from the end of the gene drawing, if it is greater than 1
then arrows will be drawn along the gene length. If it is 0 or NA then arrows will
not be drawn.

sort.features Logical. If TRUE, sort features by genomic position.

32 plotJunctionSeqResultsForGene

drawCoordinates

Whether to label the genomic coordinates at the bottom of the plot.
yAxisLabels.inExponentialForm

Logical. If TRUE, then the y-axis will be labelled in exponential form.

graph.margins Numeric vector of length 4. These margins values used (as if for par("mar")) for
the main graph. The lower part of the plot uses the same left and right margins.

GENE.annotation.relative.height

The height of the "gene track" displayed underneath the main graph, relative to
the height of the main graph. By default it is 20 percent.

TX.annotation.relative.height

For all plots that draw the annotated-transcript set (when the with.TX parameter
is TRUE), this sets the height of each transcript, as a fraction of the height of the
main graph. By default it is 2.5 percent.

CONNECTIONS.relative.height

The height of the panel that connects the plotting area to the gene annotation
area, relative to the height of the plotting area. This panel has the lines that
connects the counting bin columns to their actual loci on the gene. By default it
is 10 percent.

SPLICE.annotation.relative.height

The height of the area that shows the splice junction loci, relative to the size of
the plotting area.

TX.margins A numeric vector of length 2. The size of the blank space between the gene plot
and the transcript list and then beneath the transcript list, relative to the size of
each transcript line.

title.main Character string. Overrides the default main plot title.

title.ylab Character string. Overrides the default y-axis label for the left y-axis.
title.ylab.right

Character string. Overrides the default y-axis label for the right y-axis.
condition.legend.text

List or named vector of character strings. This optional parameter can be used to
assign labels to each condition variable values. It should be a list or named vec-
tor with length equal to factor(condition). Each element should be named
with one of the values from factor(condition), and should contain the label.
They will be listed in this order in the figure legend.

include.TX.names

Logical value. If TRUE, then for the plots that include the annotated transcript,
the transcript names will be listed. The labels will be drawn at half the size of
anno.cex.text.

draw.start.end.sites

Logical value. If TRUE, then transcript start/end sites will be marked on the main
gene annotation.

label.chromosome

Logical. If TRUE, label the chromosome in the left margin. If the text is too long
it will be auto-fitted into the available margin.

splice.junction.drawing.style

The visual style of the splice junctions drawn on the gene annotation. The de-
fault uses paired hyperbolas with the ends straightened out. A number of other
styles are available.

plotJunctionSeqResultsForGene 33

draw.nested.SJ Logical. If TRUE, overlapping splice junctions will be drawn layered under one
another. This can vastly improve readability when there are a large number of
overlapping splice junctions. Default is TRUE.

merge.exon.parts

Logical. If TRUE, in the gene annotation plot merge connected exon-fragments
and delineate them with dotted lines.

verbose if TRUE, send debugging and progress messages to the console / stdout.

debug.mode Logical. If TRUE, print additional debugging information during execution.

INTERNAL.VARS NOT FOR GENERAL USE. Intended only for use by JunctionSeq itself, inter-
nally. This is used for passing pre-generated data (when generating many similar
plots, for example), and for internally-generated parameters. DO NOT USE.

... Additional options to pass to plotting functions, particularly graphical parame-
ters.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");

plotJunctionSeqResultsForGene(geneID = "ENSRNOG00000009281", jscs);

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

######################
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Make an expression plot for a given gene:
plotJunctionSeqResultsForGene(geneID = "ENSRNOG00000009281", jscs);

#Plot normalized read counts for a given gene:

34 plotMA

plotJunctionSeqResultsForGene(geneID = "ENSRNOG00000009281", jscs,
plot.type = "normCounts");

#Plot relative expression for a given gene:
plotJunctionSeqResultsForGene(geneID = "ENSRNOG00000009281", jscs,

plot.type = "rExpr");

#Plot raw read counts for a given gene:
plotJunctionSeqResultsForGene(geneID = "ENSRNOG00000009281", jscs,

plot.type = "rawCounts");

#Same thing, but with isoforms shown:
plotJunctionSeqResultsForGene(geneID = "ENSRNOG00000009281", jscs,

plot.type = "rawCounts",
displayTranscripts = TRUE);

End(Not run)

plotMA Generate a MA-Plot

Description

Generates an MA-plot, which graphs the fold change versus the mean normalized expression. Sta-
tistically significant features are colored red.

Usage

plotMA(jscs,
FDR.threshold = 0.01,
fc.name = NULL,
fc.thresh = 1,
use.pch = 20,
smooth.nbin = 256,
ylim = c(1 / 1000,1000),
use.smoothScatter = TRUE,
label.counts = TRUE,
label.axes = c(TRUE,TRUE,FALSE,FALSE),
show.labels = TRUE,
par.cex = 1, points.cex = 1, text.cex = 1,
lines.cex = 8,
anno.lwd = 2, mar = c(4.1,4.1,3.1,1.1),
miniTicks = TRUE,
verbose = TRUE, debug.mode = FALSE,
...)

Arguments

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. How-
ever in this case a number of additional steps will be necessary: Dispersions and

plotMA 35

size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage. Effect sizes and parameter estimates must be created
via estimateEffectSizes.

FDR.threshold The FDR threshold used to color dots. Tests with an adjusted-p-value more
significant than this threshold will be marked in red.

fc.name The name of the column to take from fData(jscs).

fc.thresh The fold-change threshold required to count a significant locus in the count la-
bels. It will also draw horizontal lines at this threshold.

use.pch The value of pch to pass to the points call.
use.smoothScatter

Logical. If TRUE, non-significant genes will be ploted with density shading.

smooth.nbin The number of bins to smooth, for the density plot, if use.smoothScatter is
TRUE.

ylim The y-axis limits.

label.counts Logical. If TRUE, include labels showing the number of loci that pass both the
statistical-significance and fold-change threshold in each direction.

label.axes Logical vector. Whether to label each axis. Must have length 4; each corre-
sponds to the bottom, left, top, and right axes respectively.

show.labels Logical. If TRUE, include all titles and axes labels.

par.cex The cex value to be passed to par.

points.cex The cex value to be passed to points.

text.cex The cex value to be passed to text.

lines.cex The cex value to be passed to lines, box, and similar.

anno.lwd The lwd value to be passed to lines, box, axis, and similar.

mar The margin sizes, expressed in lines. see link{par}.

miniTicks Logical. If TRUE, then include "mini tick marks" on the x and y axes.

verbose if TRUE, send debugging and progress messages to the console / stdout.

debug.mode if TRUE, send even more debugging and progress messages to the console /
stdout.

... Additional graphical parameters.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");
plotMA(jscs);

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

36 readAnnotationData

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

######################
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Plot M-A:
plotMA(jscs);

End(Not run)

readAnnotationData Read junctionSeq annotation files produced by QoRTs.

Description

This function reads the "flattened" gff annotation file created by QoRTs. This annotation file con-
tains all the gene, transcript, exon, and junction ID’s and their loci. In general this function is not
used by the end-user, but is called internally by runJunctionSeqAnalyses or readJunctionSeqCounts.

Usage

readAnnotationData(flat.gff.file)

Arguments

flat.gff.file Character string. The filename of the "flat" gff annotation file. The file may be
gzip-compressed. This "flat" gff file must be produced by the QoRTs jar utility
using the makeFlatGtf or mergeNovelSplices functions (depending on whether
inclusion of novel splice junctions is desired).

Value

A data.frame object, containing the annotation information from the flat gff file.

readJunctionSeqCounts 37

Examples

gff.file <- system.file("extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

#Parse the GFF file:
annoData <- readAnnotationData(gff.file);
head(annoData);

readJunctionSeqCounts Read junctionSeq count files

Description

This function loads read-count data (usually produced by QoRTs) and compiles them into a JunctionSeqCountSet
object.

This function is called internally by the runJunctionSeqAnalyses function, and thus for most
purposes users should not need to call this function directly. It may be useful to advanced users
performing non-standard analyses.

Usage

readJunctionSeqCounts(countfiles, countdata,
samplenames, design,
flat.gff.file,
test.formula1 = formula(~ sample + countbin + condition : countbin),
analysis.type = c("junctionsAndExons","junctionsOnly","exonsOnly"),
nCores = 1,
use.exons, use.junctions,
use.known.junctions = TRUE, use.novel.junctions = TRUE,
use.multigene.aggregates = FALSE,
gene.names,
verbose = TRUE,
method.countVectors = c("geneLevelCounts","sumOfAllBinsForGene",

"sumOfAllBinsOfSameTypeForGene"),
noDESeqMatrix = FALSE

)

Arguments

countfiles Character vector. The filenames of the count files generated by QoRTs. The
counts must all be generated using equivalent QoRTs parameters. The stranded-
ness must be the same, as well as the inclusion of novel junctions.

countdata List. An alternative parameterization. Instead of supplying count files using the
countfiles parameter, you can pass a list of data frames, one for each sample.
Each data frame should contain two columns: the first should be the feature id
and the second should be the counts. This list must have the same length as the
samplenames parameter.

samplenames Character vector. A vector of full sample names, in the same order as the count-
files parameter.

38 readJunctionSeqCounts

design A data frame containing the condition variable and all desired covariates. All
variables should be factors.

flat.gff.file Character string. The filename of the "flat" gff annotation file. Can be gzip-
compressed. This "flat" gff file must be produced by the QoRTs jar utility using
the makeFlatGtf or mergeNovelSplices functions (depending on whether inclu-
sion of novel splice junctions is desired).
NOTE: This option is technically optional, but strongly recommended. If it is
not included, then attempts to plot the results will crash unless (non-default)
options are used to deactivate the plotting of genomic coordinates and transcript
information

test.formula1 For advanced users. The base formula for the alternate hypothesis model used
in the hypothesis tests.
NOTE: the biological condition to be tested must be named "condition".

analysis.type Character string. One of "junctionsAndExons", "junctionsOnly", or "exonsOnly".
This parameter determines what type of analysis is to be performed. By default
JunctionSeq tests both splice junction loci and exonic regions for differential
usage (a "hybrid" analysis). This parameter can be used to limit analyses specif-
ically to either splice junction loci or exonic regions.

nCores The number of cores to use. Note that multicore functionality may not be avail-
able on all platforms.

use.exons Logical value. This is an alternate parameterization of the analysis.type pa-
rameter. If TRUE, then exonic region loci will be included in the analyses and
will be tested for differential usage. If this parameter is set, then parameter
use.junctions must also be set.

use.junctions Logical value. This is an alternate parameterization of the analysis.type pa-
rameter. If TRUE, then splice junction loci will be included in the analyses and
will be tested for differential usage. If this parameter is set, then parameter
use.exons must also be set.

use.known.junctions

Logical value. If TRUE, then known splice junctions will not be filtered out prior
to analysis. Note: this is overidden if use.junctions is FALSE or if analysis.type
is set to "exonsOnly".

use.novel.junctions

Logical value. If TRUE, then novel splice junctions will not be filtered out prior to
analysis. Note: this is overidden if use.junctions is FALSE or if analysis.type
is set to "exonsOnly".

use.multigene.aggregates

Logical value. Whether to attempt to test "aggregate genes" which consist of
multiple genes that overlap with one another. Note that inclusion of aggregate
genes may affect the false discovery rate, since by their very nature aggregate
genes will often show differential splice junction usage, as the two genes will
often be regulated independently.

gene.names data.frame. This optional parameter can be used to decoder the gene id’s used in
the actual analysis into gene symbols or gene names for general readability. This
must be a text file name or data.frame with two columns of character strings. The
first must be the gene ID’s, and the second must be the gene names (as you wish
them to appear in the plots). Genes are allowed to have multiple gene names, in
which case they will be separated by commas. The gene names will be used in
the plots and figures.

verbose if TRUE, send debugging and progress messages to the console / stdout.

runJunctionSeqAnalyses 39

method.countVectors

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the type of count vectors to be used in the model framework. By de-
fault JunctionSeq compares the counts for a specific feature against the counts
across the rest of the gene minus the counts for the specific feature. Alterna-
tively, the sum of all other features on the gene can be used, like in DEXSeq.
The advantage to the default JunctionSeq behavior is that no read or read-pair
is ever counted more than once in any model. Under DEXSeq, some reads may
cover many exonic segments and thus be counted repeatedly.

noDESeqMatrix Suppresses the internal generation of a DESeq2 object. Depending on the op-
tions used this will break many downstream steps, and is for advanced usage
only.

Value

A JunctionSeqCountSet.

Examples

##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/tiny/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/tiny/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Advanced Analysis:

#Make a "design" dataframe:
design <- data.frame(condition = factor(decoder$group.ID));
#Read the QoRTs counts.
jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file

);

runJunctionSeqAnalyses

Run a JunctionSeq analysis.

40 runJunctionSeqAnalyses

Description

This function runs a complete analysis from start to finish. It internally calls functions readAnnotationData,
readJunctionSeqCounts, estimateJunctionSeqSizeFactors, estimateJunctionSeqDispersions,
fitJunctionSeqDispersionFunction, testForDiffUsage, and estimateEffectSizes.

Usage

runJunctionSeqAnalyses(sample.files, sample.names, condition,
flat.gff.file,
analysis.type = c("junctionsAndExons","junctionsOnly","exonsOnly"),
meanCountTestableThreshold = "auto",
nCores = 1,
use.covars,
test.formula0 = formula(~ sample + countbin),
test.formula1 = formula(~ sample + countbin + condition : countbin),
effect.formula = formula(~ condition + countbin + condition : countbin),
geneLevel.formula = formula(~ condition),
use.exons, use.junctions,
use.known.junctions = TRUE,
use.novel.junctions = TRUE,
use.multigene.aggregates = FALSE,
gene.names,
method.GLM = c(c("advanced","DESeq2-style"),

c("simpleML","DEXSeq-v1.8.0-style")),
method.dispFit = c("parametric", "local", "mean"),
method.dispFinal = c("shrink","max","fitted","noShare"),
method.sizeFactors = c("byGenes","byCountbins"),
method.countVectors = c("geneLevelCounts","sumOfAllBinsForGene",

"sumOfAllBinsOfSameTypeForGene"),
method.expressionEstimation = c("feature-vs-gene",

"feature-vs-otherFeatures"),
method.cooksFilter = TRUE,
optimizeFilteringForAlpha = 0.01,
fitDispersionsForExonsAndJunctionsSeparately = TRUE,
keep.hypothesisTest.fit = FALSE,
keep.estimation.fit = FALSE,
replicateDEXSeqBehavior.useRawBaseMean = FALSE,
verbose = TRUE, debug.mode = FALSE)

Arguments

sample.files Character vector. The filenames of the count files generated by QoRTs. The
counts must all be generated using equivalent QoRTs parameters. The stranded-
ness must be the same, as well as the inclusion of novel junctions.

sample.names A character vector of sample names. This must have the same length as sam-
ple.files, and should be in the same order.

condition A factor vector of condition values. This must have the same length as sam-
ple.files and sample.names, and should be listed in the same order.

flat.gff.file A flattened gff-formatted annotation file from which the gene counts were gen-
erated. Technically optional, but STRONGLY RECOMMENDED, as the anno-
tation data WILL be required by plotting functions.

runJunctionSeqAnalyses 41

analysis.type Character string. One of "junctionsAndExons", "junctionsOnly", or "exonsOnly".
This parameter determines what type of analysis is to be performed. By default
JunctionSeq tests both splice junction loci and exonic regions for differential
usage (a "hybrid" analysis). This parameter can be used to limit analyses specif-
ically to either splice junction loci or exonic regions.

meanCountTestableThreshold

"auto" or Numeric value. Features with a total mean normalized count of less
than this value will be excluded from the analyses. If left as the default ("auto"),
then the cutoff threshold will be determined automatically using the DESeq2
independent filtering method.

nCores Either an integer or a BiocParallelParam object. Either way, this determines The
number of cores to use. Note that multicore functionality may not be available
on all platforms. If parallel execution is not available then JunctionSeq will
automatically fallback to single-core execution. See the BiocParallel package
for more information.

use.covars Optional: for advanced users. A data frame containing covariate factors. The
names must be included in the model formulas.

test.formula0 For advanced users. The base formula for the null hypothesis model used in the
hypothesis tests.
NOTE: the biological condition to be tested must be named "condition".

test.formula1 For advanced users. The base formula for the alternate hypothesis model used
in the hypothesis tests.
NOTE: the biological condition to be tested must be named "condition".

effect.formula For advanced users. The base formula for the model used for effect size estima-
tion.
NOTE: the biological condition to be tested must be named "condition".

geneLevel.formula

For advanced users. The base formula for the model used to estimate total gene-
level expression.
NOTE: the biological condition to be tested must be named "condition".

use.exons Logical value. This is an alternate parameterization of the analysis.type pa-
rameter. If TRUE, then exonic region loci will be included in the analyses and
will be tested for differential usage. If this parameter is set, then parameter
use.junctions must also be set.

use.junctions Logical value. This is an alternate parameterization of the analysis.type pa-
rameter. If TRUE, then splice junction loci will be included in the analyses and
will be tested for differential usage. If this parameter is set, then parameter
use.exons must also be set.

use.known.junctions

Logical value. If TRUE, then known splice junctions will not be filtered out prior
to analysis. Note: this is overidden if use.junctions is FALSE or if analysis.type
is set to "exonsOnly".

use.novel.junctions

Logical value. If TRUE, then novel splice junctions will not be filtered out prior to
analysis. Note: this is overidden if use.junctions is FALSE or if analysis.type
is set to "exonsOnly".

use.multigene.aggregates

Logical value. Whether to attempt to test "aggregate genes" which consist of
multiple genes that overlap with one another. Note that inclusion of aggregate

42 runJunctionSeqAnalyses

genes may affect the false discovery rate, since by their very nature aggregate
genes will often show differential splice junction usage, as the two genes will
often be regulated independently.

gene.names data.frame. This optional parameter can be used to decoder the gene id’s used in
the actual analysis into gene symbols or gene names for general readability. This
must be a text file name or data.frame with two columns of character strings. The
first must be the gene ID’s, and the second must be the gene names (as you wish
them to appear in the plots). Genes are allowed to have multiple gene names, in
which case they will be separated by commas. The gene names will be used in
the plots and figures.

method.GLM Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
The default is "advanced" or, equivalently, "DESeq2-style". This uses the dis-
persion estimation methodology used by DESeq2 and DEXSeq v1.12.0 or higher
to generate the initial (feature-specific) dispersion estimates. The alternative
method is "simpleML" or, equivalently, "DEXSeq-v1.8.0-style". This uses a
simpler maximum-likelihood-based method used by the original DESeq and by
DEXSeq v1.8.0 or less.

method.dispFit Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the method used to generated "fitted" dispersion estimates. One of
"parametric" (the default), "local", or "mean". See the DESeq2 documentation
for more information.

method.dispFinal

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the method used to arrive at a "final" dispersion estimate. The de-
fault, "shrink" uses the maximum a posteriori estimate, combining information
from both the fitted and feature-specific dispersion estimates. This is the method
used by DESeq2 and DEXSeq v1.12.0 and above.

method.sizeFactors

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the method used to calculate normalization size factors. By default
JunctionSeq uses gene-level expression. As an alternative, feature-level counts
can be used as they are in DEXSeq. In practice the difference is almost always
negligible.

method.countVectors

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the type of count vectors to be used in the model framework. By de-
fault JunctionSeq compares the counts for a specific feature against the counts
across the rest of the gene minus the counts for the specific feature. Alterna-
tively, the sum of all other features on the gene can be used, like in DEXSeq.
The advantage to the default JunctionSeq behavior is that no read or read-pair

runJunctionSeqAnalyses 43

is ever counted more than once in any model. Under DEXSeq, some reads may
cover many exonic segments and thus be counted repeatedly.

method.expressionEstimation

Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
Determines the methodology used to generate feature expression estimates and
relative fold changes. By default each feature is modeled separately. Under the
default count-vector method, this means that the resultant relative fold changes
will be a measure of the relative fold change between the feature and the gene
as a whole.
Alternatively, the "feature-vs-otherFeatures" method builds a large, complex
model containing all features belonging to the gene. The coefficients for each
feature are then "balanced" using linear contrasts weighted by the inverse of
their variance. In general we have found this method to produce very similar
results but less efficiently and less consistently. Additionally, this alternative
method "multi-counts" reads that cover more than one feature. This can result
in over-weighting of exonic regions with a large number of annotated variations
in a small genomic area, as each individual read or read-pair may be counted
many times in the model.
Under the default option, no read or read-pair is ever counted more than once in
a given model.

method.cooksFilter

Logical value. if TRUE, use the cook’s filter to detect and remove outliers.
optimizeFilteringForAlpha

Numeric value between 0 and 1. If meanCountTestableThreshold is set to
"auto" then this sets the adjusted-p-value threshold to optimize against.

fitDispersionsForExonsAndJunctionsSeparately

When running a "junctionsAndExons" type analysis in which both exons and
splice junctions are being tested simultaniously, this parameter determines whether
a single fitted dispersion model should be fitted for both exons and splice junc-
tions, or if separate fitted dispersions should be calculated for each. By default
the dispersions are run separately.

keep.hypothesisTest.fit

Logical value. If TRUE, save both complete hypothesis test model fits for ev-
ery gene. This will require a lot of memory, but may be useful for statistical
diagnostics. Default: FALSE.

keep.estimation.fit

Logical value. If TRUE, save the complete model fits for every gene. This will
require a lot of memory, but may be useful for statistical diagnostics. Default:
FALSE.

verbose if TRUE, send debugging and progress messages to the console / stdout.

debug.mode if TRUE, send even more debugging and progress messages to the console /
stdout.

replicateDEXSeqBehavior.useRawBaseMean

USED ONLY FOR INTERNAL TESTING! NOT INTENDED FOR ACTUAL
USE!
This variable activates an alternative mode in which a (very minor) bug in DEXSeq
v1.14.0 and earlier is replicated. If TRUE, the baseMean and baseVar variables
will be computed using raw counts rather than normalized counts. This is used

44 setJunctionSeqCompiledSourcePackage

for internal tests in which DEXSeq functionality is replicated precisely and the
results are compared against equivalent DEXSeq results. Without this option the
results would differ slightly (generally by less than 1 hundreth of a percent).
USED ONLY FOR INTERNAL TESTING! NOT INTENDED FOR ACTUAL
USE!

Value

A JunctionSeqCountSet object, containing the complete analysis dataset and results.

Examples

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##

jscs <- runJunctionSeqAnalyses(sample.files = countFiles,
sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);

End(Not run)

setJunctionSeqCompiledSourcePackage

Set the source of the internal compiled C++ binaries.

Description

This function sets the package that contains the compiled C++ binaries needed by JunctionSeq.

This is intended for advanced users, or for users attempting to install testing versions of JunctionSeq
without a C++ compiler.

Usage

setJunctionSeqCompiledSourcePackage(PACKAGE = c("JunctionSeq","DESeq2"))

testForDiffUsage 45

Arguments

PACKAGE The name of the package where the compiled binaries are stored.

testForDiffUsage Test Junctions for Differential Junction Usage

Description

This function runs the hypothesis tests for differential junction usage.

This function is called internally by the runJunctionSeqAnalyses function, and thus for most
purposes users should not need to call this function directly. It may be useful to advanced users
performing non-standard analyses.

Usage

testForDiffUsage(jscs,
test.formula0 = formula(~ sample + countbin),
test.formula1 = formula(~ sample + countbin + condition : countbin),
method.GLM = c(c("advanced","DESeq2-style"),

c("simpleML","DEXSeq-v1.8.0-style")),
dispColumn="dispersion", nCores=1,
keep.hypothesisTest.fit = FALSE,
meanCountTestableThreshold = "auto",
optimizeFilteringForAlpha = 0.01,
method.cooksFilter = TRUE,
cooksCutoff,
pAdjustMethod = "BH",
verbose = TRUE)

Arguments

jscs A JunctionSeqCountSet. Usually initially created by readJunctionSeqCounts.
Dispersions and size factors must be set, usually using functions estimateJunctionSeqSizeFactors
and estimateJunctionSeqDispersions.

test.formula0 The formula for the null hypothesis. Note that the condition to be tested must
be named "condition".

test.formula1 The formula for the alternative hypothesis. Note that the condition to be tested
must be named "condition".

method.GLM Character string. Can be used to apply alternative methodologies or implemen-
tations. Intended for advanced users who have strong opinions about the under-
lying statistical methodologies.
The default is "advanced" or, equivalently, "DESeq2-style". This uses the model
test methodology used by DESeq2 and DEXSeq v1.12.0 or higher. The alterna-
tive method is "simpleML" or, equivalently, "DEXSeq-v1.8.0-style". This uses
a simpler maximum-likelihood-based method used by the original DESeq and
by some earlier versions of DEXSeq (v1.8.0 or less).

dispColumn Character value. The name of the fData(jscs) column in which the model
dispersion is stored.

46 testForDiffUsage

nCores Either an integer or a BiocParallelParam object. Either way, this determines The
number of cores to use. Note that multicore functionality may not be available
on all platforms. If parallel execution is not available then JunctionSeq will
automatically fallback to single-core execution. See the BiocParallel package
for more information.

keep.hypothesisTest.fit

Logical value. If TRUE, save both complete hypothesis test model fits for ev-
ery gene. This will require a lot of memory, but may be useful for statistical
diagnostics. Default: FALSE.

meanCountTestableThreshold

"auto" or Numeric value. Features with a total mean normalized count of less
than this value will be excluded from the analyses. If left as the default ("auto"),
then the cutoff threshold will be determined automatically using the DESeq2
independent filtering method.

optimizeFilteringForAlpha

Numeric value between 0 and 1. If meanCountTestableThreshold is set to
"auto" then this sets the adjusted-p-value threshold to optimize against.

method.cooksFilter

Logical value. if TRUE, use the cook’s filter to detect and remove outliers.

cooksCutoff The cook’s cutoff threshold to use.

pAdjustMethod The p-adjustment method to use with the p.adjust function.

verbose if TRUE, send debugging and progress messages to the console / stdout.

Value

A JunctionSeqCountSet, with hypothesis test results included.

Examples

data(exampleDataSet,package="JctSeqData");
jscs <- testForDiffUsage(jscs);

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

##
#Advanced Analysis:

#Make a "design" dataframe:
design <- data.frame(condition = factor(decoder$group.ID));

writeBedTrack 47

#Read the QoRTs counts.
jscs = readJunctionSeqCounts(countfiles = countFiles,

samplenames = decoder$sample.ID,
design = design,
flat.gff.file = gff.file

);
#Generate the size factors and load them into the JunctionSeqCountSet:
jscs <- estimateJunctionSeqSizeFactors(jscs);
#Estimate feature-specific dispersions:
jscs <- estimateJunctionSeqDispersions(jscs);
#Fit dispersion function and estimate MAP dispersion:
jscs <- fitJunctionSeqDispersionFunction(jscs);
#Test for differential usage:
jscs <- testForDiffUsage(jscs);
#Estimate effect sizes and expression estimates:
jscs <- estimateEffectSizes(jscs);

End(Not run)

writeBedTrack Write splice junction browser tracks

Description

This function saves the JunctionSeq results in the form of a set of "bed" files designed for use with
the UCSC genome browser.

Usage

writeExprBedTrack(file, jscs,
trackLine,
only.with.sig.gene = FALSE,
only.sig = FALSE,
only.testable = TRUE,
plot.exons = TRUE, plot.junctions = TRUE, plot.novel.junctions = TRUE,
group.RGB,
use.score = FALSE,
FDR.threshold = 0.05,
count.digits = 1,
includeGeneID = FALSE,
includeLocusID = TRUE,
includeGroupID = TRUE,
output.format = c("BED", "GTF", "GFF3"),
use.gzip = TRUE,
verbose = TRUE)

writeSigBedTrack(file,
jscs,
trackLine,
only.sig = TRUE,
only.testable = TRUE,

48 writeBedTrack

plot.exons = TRUE, plot.junctions = TRUE, plot.novel.junctions = TRUE,
sig.RGB = "255,0,0",
nonsig.RGB = "0,0,0",
use.score = TRUE,
FDR.threshold = 0.05,
pval.digits = 4,
includeGeneID = FALSE,
includeLocusID = TRUE,
output.format = c("BED", "GTF", "GFF3"),
use.gzip = TRUE,
verbose = TRUE)

Arguments

file Character string. File path for the output bed file.

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. How-
ever in this case a number of additional steps will be necessary: Dispersions and
size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage. Effect sizes and parameter estimates must be created
via estimateEffectSizes.

trackLine The "track line" of the bed file. In other words, the first line of the file. By
default JunctionSeq will attempt to automatically generate a reasonable track
line.

only.with.sig.gene

Logical. If TRUE, only genes containing statistically significant results will be
included.

only.sig Logical. If TRUE, only statistically significant loci will be included.

only.testable Logical. If TRUE, only loci with sufficiently high expression to be tested will be
included.

plot.exons Logical. If TRUE, exons will be plotted.

plot.junctions Logical. If TRUE, splice junctions will be plotted.
plot.novel.junctions

Logical. If TRUE, novel splice junctions will be plotted (if plot.junctions is also
TRUE).

sig.RGB Character string. The RGB color for significant genes. Must be in the format
"r,g,b", with each value ranging from 0 to 255.

nonsig.RGB Character string. The RGB color for non-significant loci. Must be in the format
"r,g,b", with each value ranging from 0 to 255.

group.RGB Character string. The RGB color used for each experimental group. Must be in
the format "r,g,b", with each value ranging from 0 to 255. Must have a length
equal to the number of experimental condition values.

use.score Logical. If TRUE, score each locus based on the p-value.

FDR.threshold Numeric. The FDR-adjusted p-value threshold to use to assign statistical signif-
icance.

count.digits Numeric. The number of digits after the decimal point to include for the mean
normalized counts.

writeBedTrack 49

pval.digits Numeric. The number of digits after the decimal point to include for the p-
values.

includeGeneID Logical. If TRUE, include the ID of the gene in the "name" field of each line.

includeLocusID Logical. If TRUE, include the ID of the locus in the "name" field of each line.

includeGroupID Logical. If TRUE, include the ID of the group in the "name" field of each line.

output.format Character string. The format to use.

use.gzip Logical. Whether or not to gzip the bed file.

verbose Logical. if TRUE, output debugging/progress information.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");
writeExprBedTrack("test.exonCoverage.bed.gz", jscs,

plot.exons = TRUE, plot.junctions = FALSE)

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

######################
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Exon coverage:
writeExprBedTrack("test.exonCoverage.bed.gz", jscs,

plot.exons = TRUE, plot.junctions = FALSE)
#Junction coverage:
writeExprBedTrack("test.jctCoverage.bed.gz", jscs,

plot.exons = FALSE, plot.junctions = TRUE)
#Both Exon and Junction coverage:
writeExprBedTrack("test.featureCoverage.bed.gz", jscs)

50 writeCompleteResults

#p-values of significant features:
writeSigBedTrack("test.pvals.bed.gz", jscs)

End(Not run)

writeCompleteResults Produce output data files, given annotation files and DEXSeq exon-
CountSet object and DEXSeq results data.

Description

This function takes the raw DEXSeq results and merges in feature annotations, as well as calculating
and merging in a number of different normalized and fitted values for each level of the condition
variable.

Usage

writeCompleteResults(jscs, outfile.prefix,
gzip.output = TRUE,
FDR.threshold = 0.01,
save.allGenes = TRUE, save.sigGenes = TRUE,
save.fit = FALSE, save.VST = FALSE,
save.bedTracks = TRUE,
save.jscs = FALSE,
bedtrack.format = c("BED", "GTF", "GFF3"),
verbose = TRUE)

Arguments

jscs A JunctionSeqCountSet. Usually created by runJunctionSeqAnalyses.
Alternatively, this can be created manually by readJunctionSeqCounts. How-
ever in this case a number of additional steps will be necessary: Dispersions and
size factors must then be set, usually using functions estimateSizeFactors
and estimateJunctionSeqDispersions. Hypothesis tests must be performed
by testForDiffUsage. Effect sizes and parameter estimates must be created
via estimateEffectSizes.

outfile.prefix A string indicating the filename prefix where output files should be saved.

gzip.output Logical. If TRUE, then all ".txt" text files should be gzip-compressed to save
space.

FDR.threshold The adjusted-p-value threshold used to determine statistical significance.

save.allGenes Logical. Whether to save files containing data for all genes.

save.sigGenes Logical. Whether to save a separate set of files containing data for only the
significant genes. If this and save.allGenes are both true then two sets of files
will be generated.

save.fit Logical. Whether to save model fit data.

save.VST Logical. Whether to save VST-transformed data.

save.bedTracks Logical. Whether to save "bed" junction coverage tracks.

save.jscs Logical. Whether to the entire JunctionSeqCountSet object. Default is FALSE.

writeCompleteResults 51

bedtrack.format

Character string. The format to use for the browser tracks.

verbose A boolean flag indicating whether or not to print progress information during
execution. (Default=FALSE)

Details

Saves a wide variety of data from the analyses.

Value

This is a side-effecting function, and does not return a value.

Examples

data(exampleDataSet,package="JctSeqData");
#Write results tables and browser track files:
writeCompleteResults(jscs, outfile.prefix = "./results.");

Not run:
##
#Set up example data:
decoder.file <- system.file(

"extdata/annoFiles/decoder.bySample.txt",
package="JctSeqData");

decoder <- read.table(decoder.file,
header=TRUE,
stringsAsFactors=FALSE);

gff.file <- system.file(
"extdata/cts/withNovel.forJunctionSeq.gff.gz",
package="JctSeqData");

countFiles <- system.file(paste0("extdata/cts/",
decoder$sample.ID,
"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),
package="JctSeqData");

######################
#Run example analysis:
jscs <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,
condition=factor(decoder$group.ID),
flat.gff.file = gff.file,
analysis.type = "junctionsAndExons"

);
##

#Write results tables and browser track files:
writeCompleteResults(jscs, outfile.prefix = "./results.");

End(Not run)

Index

∗ classes
JunctionSeqCountSet-class, 24

∗ datasets
defaultColorList, 14

axis, 28, 35

box, 28, 35
buildAllPlots, 2, 10, 13, 14
buildAllPlotsForGene, 8, 9, 14, 29

defaultColorList, 14

eSet, 26
estimateEffectSizes, 3, 10, 15, 24, 30, 35,

40, 48, 50
estimateJunctionSeqDispersions, 3, 10,

16, 18, 18, 20, 22, 27, 30, 35, 40, 45,
48, 50

estimateJunctionSeqSizeFactors, 20, 40,
45

estimateSizeFactors, 3, 10, 16, 18, 20, 22,
27, 30, 35, 48, 50

fitJunctionSeqDispersionFunction, 22,
24, 40

graphical parameters, 5, 11, 31

JUNCTIONSEQ.DEFAULT.COLOR.LIST
(defaultColorList), 14

junctionSeqColors, 30
junctionSeqColors (defaultColorList), 14
JunctionSeqCountSet, 44
JunctionSeqCountSet

(JunctionSeqCountSet-class), 24
JunctionSeqCountSet-class, 24

lines, 28, 35

par, 5, 11, 27, 31, 35
plotDispEsts, 26
plotJunctionSeqResultsForGene, 4, 5, 8,

11, 13, 14, 29
plotMA, 34

points, 35

readAnnotationData, 36, 40
readJunctionSeqCounts, 3, 10, 16, 18, 20,

22, 24, 26, 27, 30, 34, 36, 37, 40, 45,
48, 50

runJunctionSeqAnalyses, 3, 10, 15, 18, 20,
22, 24, 26, 27, 30, 34, 36, 37, 39, 45,
48, 50

setJunctionSeqCompiledSourcePackage,
44

testForDiffUsage, 3, 10, 27, 30, 35, 40, 45,
48, 50

text, 35

Versioned, 26
VersionedBiobase, 26

writeBedTrack, 47
writeCompleteResults, 50
writeExprBedTrack (writeBedTrack), 47
writeSigBedTrack (writeBedTrack), 47
writeSizeFactors

(estimateJunctionSeqSizeFactors),
20

52

	buildAllPlots
	buildAllPlotsForGene
	defaultColorList
	estimateEffectSizes
	estimateJunctionSeqDispersions
	estimateJunctionSeqSizeFactors
	fitJunctionSeqDispersionFunction
	JunctionSeqCountSet-class
	plotDispEsts
	plotJunctionSeqResultsForGene
	plotMA
	readAnnotationData
	readJunctionSeqCounts
	runJunctionSeqAnalyses
	setJunctionSeqCompiledSourcePackage
	testForDiffUsage
	writeBedTrack
	writeCompleteResults
	Index

