coseq-package {coseq} | R Documentation |
Co-expression analysis for expression profiles arising from high-throughput sequencing data. Feature (e.g., gene) profiles are clustered using adapted transformations and mixture models or a K-means algorithm, and model selection criteria (to choose an appropriate number of clusters) are provided.
Package: | coseq |
Type: | Package |
Version: | 1.11.1 |
Date: | 2020-01-04 |
License: | GPL (>=3) |
LazyLoad: | yes |
Andrea Rau, Cathy Maugis-Rabusseau, Antoine Godichon-Baggioni
Maintainer: Andrea Rau <andrea.rau@inrae.fr>
Godichon-Baggioni, A., Maugis-Rabusseau, C. and Rau, A. (2018) Clustering transformed compositional data using K-means, with applications in gene expression and bicycle sharing system data. Journal of Applied Statistics, doi:10.1080/02664763.2018.1454894.
Rau, A. and Maugis-Rabusseau, C. (2018) Transformation and model choice for co-expression analayis of RNA-seq data. Briefings in Bioinformatics, 19(3)-425-436.
Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux, G. (2015) Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, doi: 10.1093/bioinformatics/btu845.
Rau, A., Celeux, G., Martin-Magniette, M.-L., Maugis-Rabusseau, C. (2011) Clustering high-throughput sequencing data with Poisson mixture models. Inria Research Report 7786. Available at http://hal.inria.fr/inria-00638082.
## Simulate toy data, n = 300 observations set.seed(12345) countmat <- matrix(runif(300*4, min=0, max=500), nrow=300, ncol=4) countmat <- countmat[which(rowSums(countmat) > 0),] conds <- rep(c("A","B","C","D"), each=2) ## Run the Normal mixture model for K = 2,3,4 run_arcsin <- coseq(object=countmat, K=2:4, iter=5, transformation="arcsin", model="Normal") run_arcsin ## Plot and summarize results plot(run_arcsin) summary(run_arcsin) ## Compare ARI values for all models (no plot generated here) ARI <- compareARI(run_arcsin, plot=FALSE) ## Compare ICL values for models with arcsin and logit transformations run_logit <- coseq(object=countmat, K=2:4, iter=5, transformation="logit", model="Normal") compareICL(list(run_arcsin, run_logit)) ## Use accessor functions to explore results clusters(run_arcsin) likelihood(run_arcsin) nbCluster(run_arcsin) ICL(run_arcsin) ## Examine transformed counts and profiles used for graphing tcounts(run_arcsin) profiles(run_arcsin) ## Run the K-means algorithm for logclr profiles for K = 2,..., 20 run_kmeans <- coseq(object=countmat, K=2:20, transformation="logclr", model="kmeans") run_kmeans