Contents

1 Introduction

Here, we explain the way to generate CCI simulation data. scTensor has a function cellCellSimulate to generate the simulation data.

The simplest way to generate such data is cellCellSimulate with default parameters.

suppressPackageStartupMessages(library("scTensor"))
sim <- cellCellSimulate()
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

This function internally generate the parameter sets by newCCSParams, and the values of the parameter can be changed, and specified as the input of cellCellSimulate by users as follows.

# Default parameters
params <- newCCSParams()
str(params)
## Formal class 'CCSParams' [package "scTensor"] with 5 slots
##   ..@ nGene  : num 1000
##   ..@ nCell  : num [1:3] 50 50 50
##   ..@ cciInfo:List of 4
##   .. ..$ nPair: num 500
##   .. ..$ CCI1 :List of 4
##   .. .. ..$ LPattern: num [1:3] 1 0 0
##   .. .. ..$ RPattern: num [1:3] 0 1 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI2 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 1 0
##   .. .. ..$ RPattern: num [1:3] 0 0 1
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   .. ..$ CCI3 :List of 4
##   .. .. ..$ LPattern: num [1:3] 0 0 1
##   .. .. ..$ RPattern: num [1:3] 1 0 0
##   .. .. ..$ nGene   : num 50
##   .. .. ..$ fc      : chr "E10"
##   ..@ lambda : num 1
##   ..@ seed   : num 1234
# Setting different parameters
# No. of genes : 1000
setParam(params, "nGene") <- 1000
# 3 cell types, 20 cells in each cell type
setParam(params, "nCell") <- c(20, 20, 20)
# Setting for Ligand-Receptor pair list
setParam(params, "cciInfo") <- list(
    nPair=500, # Total number of L-R pairs
    # 1st CCI
    CCI1=list(
        LPattern=c(1,0,0), # Only 1st cell type has this pattern
        RPattern=c(0,1,0), # Only 2nd cell type has this pattern
        nGene=50, # 50 pairs are generated as CCI1
        fc="E10"), # Degree of differential expression (Fold Change)
    # 2nd CCI
    CCI2=list(
        LPattern=c(0,1,0),
        RPattern=c(0,0,1),
        nGene=30,
        fc="E100")
    )
# Degree of Dropout
setParam(params, "lambda") <- 10
# Random number seed
setParam(params, "seed") <- 123

# Simulation data
sim <- cellCellSimulate(params)
## Getting the values of params...
## Setting random seed...
## Generating simulation data...
## Done!

The output object sim has some attributes as follows.

Firstly, sim$input contains a synthetic gene expression matrix. The size can be changed by nGene and nCell parameters described above.

dim(sim$input)
## [1] 1000   60
sim$input[1:2,1:3]
##       Cell1 Cell2 Cell3
## Gene1  9105     2     0
## Gene2     4    37   850

Next, sim$LR contains a ligand-receptor (L-R) pair list. The size can be changed by nPair parameter of cciInfo, and the differentially expressed (DE) L-R pairs are saved in the upper side of this matrix. Here, two DE L-R patterns are specified as cciInfo, and each number of pairs is 50 and 30, respectively.

dim(sim$LR)
## [1] 500   2
sim$LR[1:10,]
##    GENEID_L GENEID_R
## 1     Gene1   Gene81
## 2     Gene2   Gene82
## 3     Gene3   Gene83
## 4     Gene4   Gene84
## 5     Gene5   Gene85
## 6     Gene6   Gene86
## 7     Gene7   Gene87
## 8     Gene8   Gene88
## 9     Gene9   Gene89
## 10   Gene10   Gene90
sim$LR[46:55,]
##    GENEID_L GENEID_R
## 46   Gene46  Gene126
## 47   Gene47  Gene127
## 48   Gene48  Gene128
## 49   Gene49  Gene129
## 50   Gene50  Gene130
## 51   Gene51  Gene131
## 52   Gene52  Gene132
## 53   Gene53  Gene133
## 54   Gene54  Gene134
## 55   Gene55  Gene135
sim$LR[491:500,]
##     GENEID_L GENEID_R
## 491  Gene571  Gene991
## 492  Gene572  Gene992
## 493  Gene573  Gene993
## 494  Gene574  Gene994
## 495  Gene575  Gene995
## 496  Gene576  Gene996
## 497  Gene577  Gene997
## 498  Gene578  Gene998
## 499  Gene579  Gene999
## 500  Gene580 Gene1000

Finally, sim$celltypes contains a cell type vector. Since nCell is specified as “c(20, 20, 20)” described above, three cell types are generated.

length(sim$celltypes)
## [1] 60
head(sim$celltypes)
## Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 Celltype1 
##   "Cell1"   "Cell2"   "Cell3"   "Cell4"   "Cell5"   "Cell6"
table(names(sim$celltypes))
## 
## Celltype1 Celltype2 Celltype3 
##        20        20        20

Session information

## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
## [1] parallel  stats4    stats     graphics  grDevices utils     datasets 
## [8] methods   base     
## 
## other attached packages:
##  [1] AnnotationHub_2.18.0                   
##  [2] BiocFileCache_1.10.2                   
##  [3] dbplyr_1.4.2                           
##  [4] Homo.sapiens_1.3.1                     
##  [5] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
##  [6] org.Hs.eg.db_3.10.0                    
##  [7] GO.db_3.10.0                           
##  [8] OrganismDbi_1.28.0                     
##  [9] GenomicFeatures_1.38.0                 
## [10] AnnotationDbi_1.48.0                   
## [11] MeSH.Mmu.eg.db_1.13.0                  
## [12] LRBase.Mmu.eg.db_1.2.0                 
## [13] MeSH.Hsa.eg.db_1.13.0                  
## [14] MeSHDbi_1.22.0                         
## [15] SingleCellExperiment_1.8.0             
## [16] SummarizedExperiment_1.16.0            
## [17] DelayedArray_0.12.0                    
## [18] BiocParallel_1.20.0                    
## [19] matrixStats_0.55.0                     
## [20] Biobase_2.46.0                         
## [21] GenomicRanges_1.38.0                   
## [22] GenomeInfoDb_1.22.0                    
## [23] IRanges_2.20.0                         
## [24] S4Vectors_0.24.0                       
## [25] BiocGenerics_0.32.0                    
## [26] scTensor_1.2.1                         
## [27] RSQLite_2.1.2                          
## [28] LRBase.Hsa.eg.db_1.2.0                 
## [29] LRBaseDbi_1.4.0                        
## [30] BiocStyle_2.14.0                       
## 
## loaded via a namespace (and not attached):
##   [1] rappdirs_0.3.1                rtracklayer_1.46.0           
##   [3] AnnotationForge_1.28.0        tidyr_1.0.0                  
##   [5] ggplot2_3.2.1                 acepack_1.4.1                
##   [7] bit64_0.9-7                   knitr_1.25                   
##   [9] data.table_1.12.6             rpart_4.1-15                 
##  [11] RCurl_1.95-4.12               AnnotationFilter_1.10.0      
##  [13] cowplot_1.0.0                 europepmc_0.3                
##  [15] bit_1.1-14                    enrichplot_1.6.0             
##  [17] webshot_0.5.1                 xml2_1.2.2                   
##  [19] httpuv_1.5.2                  assertthat_0.2.1             
##  [21] viridis_0.5.1                 xfun_0.10                    
##  [23] hms_0.5.2                     evaluate_0.14                
##  [25] promises_1.1.0                TSP_1.1-7                    
##  [27] progress_1.2.2                caTools_1.17.1.2             
##  [29] dendextend_1.12.0             Rgraphviz_2.30.0             
##  [31] igraph_1.2.4.1                DBI_1.0.0                    
##  [33] htmlwidgets_1.5.1             MeSH.db_1.13.0               
##  [35] purrr_0.3.3                   dplyr_0.8.3                  
##  [37] backports_1.1.5               bookdown_0.14                
##  [39] annotate_1.64.0               biomaRt_2.42.0               
##  [41] vctrs_0.2.0                   ensembldb_2.10.0             
##  [43] abind_1.4-5                   ggforce_0.3.1                
##  [45] Gviz_1.30.0                   triebeard_0.3.0              
##  [47] BSgenome_1.54.0               checkmate_1.9.4              
##  [49] GenomicAlignments_1.22.0      gclus_1.3.2                  
##  [51] fdrtool_1.2.15                prettyunits_1.0.2            
##  [53] cluster_2.1.0                 DOSE_3.12.0                  
##  [55] dotCall64_1.0-0               lazyeval_0.2.2               
##  [57] crayon_1.3.4                  genefilter_1.68.0            
##  [59] pkgconfig_2.0.3               tweenr_1.0.1                 
##  [61] ProtGenerics_1.18.0           seriation_1.2-8              
##  [63] nnet_7.3-12                   rlang_0.4.1                  
##  [65] lifecycle_0.1.0               meshr_1.22.0                 
##  [67] registry_0.5-1                MeSH.PCR.db_1.13.0           
##  [69] rTensor_1.4                   GOstats_2.52.0               
##  [71] dichromat_2.0-0               polyclip_1.10-0              
##  [73] graph_1.64.0                  Matrix_1.2-17                
##  [75] urltools_1.7.3                base64enc_0.1-3              
##  [77] ggridges_0.5.1                viridisLite_0.3.0            
##  [79] MeSH.AOR.db_1.13.0            bitops_1.0-6                 
##  [81] visNetwork_2.0.8              KernSmooth_2.23-16           
##  [83] spam_2.4-0                    MeSH.Bsu.168.eg.db_1.13.0    
##  [85] Biostrings_2.54.0             blob_1.2.0                   
##  [87] stringr_1.4.0                 qvalue_2.18.0                
##  [89] nnTensor_1.0.2                gridGraphics_0.4-1           
##  [91] reactome.db_1.70.0            scales_1.0.0                 
##  [93] graphite_1.32.0               memoise_1.1.0                
##  [95] GSEABase_1.48.0               magrittr_1.5                 
##  [97] plyr_1.8.4                    gplots_3.0.1.1               
##  [99] gdata_2.18.0                  zlibbioc_1.32.0              
## [101] compiler_3.6.1                RColorBrewer_1.1-2           
## [103] plotrix_3.7-6                 Rsamtools_2.2.1              
## [105] XVector_0.26.0                Category_2.52.1              
## [107] MeSH.Aca.eg.db_1.13.0         htmlTable_1.13.2             
## [109] Formula_1.2-3                 MASS_7.3-51.4                
## [111] tidyselect_0.2.5              stringi_1.4.3                
## [113] highr_0.8                     MeSH.Syn.eg.db_1.13.0        
## [115] yaml_2.2.0                    GOSemSim_2.12.0              
## [117] askpass_1.1                   latticeExtra_0.6-28          
## [119] ggrepel_0.8.1                 grid_3.6.1                   
## [121] VariantAnnotation_1.32.0      fastmatch_1.1-0              
## [123] tools_3.6.1                   rstudioapi_0.10              
## [125] foreach_1.4.7                 foreign_0.8-72               
## [127] tagcloud_0.6                  outliers_0.14                
## [129] gridExtra_2.3                 farver_1.1.0                 
## [131] ggraph_2.0.0                  rvcheck_0.1.6                
## [133] digest_0.6.22                 BiocManager_1.30.9           
## [135] shiny_1.4.0                   Rcpp_1.0.3                   
## [137] BiocVersion_3.10.1            later_1.0.0                  
## [139] httr_1.4.1                    cummeRbund_2.28.0            
## [141] biovizBase_1.34.0             colorspace_1.4-1             
## [143] XML_3.98-1.20                 splines_3.6.1                
## [145] fields_9.9                    RBGL_1.62.1                  
## [147] graphlayouts_0.5.0            ggplotify_0.0.4              
## [149] plotly_4.9.1                  xtable_1.8-4                 
## [151] jsonlite_1.6                  heatmaply_0.16.0             
## [153] tidygraph_1.1.2               zeallot_0.1.0                
## [155] R6_2.4.0                      Hmisc_4.3-0                  
## [157] pillar_1.4.2                  htmltools_0.4.0              
## [159] mime_0.7                      glue_1.3.1                   
## [161] fastmap_1.0.1                 interactiveDisplayBase_1.24.0
## [163] codetools_0.2-16              maps_3.3.0                   
## [165] fgsea_1.12.0                  lattice_0.20-38              
## [167] tibble_2.1.3                  curl_4.2                     
## [169] gtools_3.8.1                  ReactomePA_1.30.0            
## [171] misc3d_0.8-4                  openssl_1.4.1                
## [173] survival_3.1-7                rmarkdown_1.16               
## [175] munsell_0.5.0                 DO.db_2.9                    
## [177] GenomeInfoDbData_1.2.2        plot3D_1.1.1                 
## [179] iterators_1.0.12              reshape2_1.4.3               
## [181] gtable_0.3.0