peakPantheR 1.0.0
Package: peakPantheR
Authors: Arnaud Wolfer
Package for Peak Picking and ANnoTation of High resolution Experiments in R,
implemented in R
and Shiny
peakPantheR
implements functions to detect, integrate and report pre-defined
features in MS files (e.g. compounds, fragments, adducts, …).
It is designed for:
multiple
compounds in one
file at a timemultiple
compounds in multiple
files in parallel
, store
results in a single
objectpeakPantheR
can process LC/MS data files in NetCDF, mzML/mzXML and
mzData format as data import is achieved using Bioconductor’s
mzR package.
To install peakPantheR
from Bioconductor:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("peakPantheR")
Install the development version of peakPantheR
directly from GitHub with:
# Install devtools
if(!require("devtools")) install.packages("devtools")
devtools::install_github("phenomecentre/peakPantheR")
Both real time and parallel compound integration require a common set of information:
netCDF
/ mzML
MS file(s)RT
/ m/z
window) for each compound.For demonstration purpose we can annotate a set a set of raw MS spectra (in NetCDF format) provided by the faahKO package. Briefly, this subset of the data from (Saghatelian et al. 2004) invesigate the metabolic consequences of knocking out the fatty acid amide hydrolase (FAAH) gene in mice. The dataset consists of samples from the spinal cords of 6 knock-out and 6 wild-type mice. Each file contains data in centroid mode acquired in positive ion mode form 200-600 m/z and 2500-4500 seconds.
Below we install the faahKO package and locate raw CDF files of interest:
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("faahKO")
library(faahKO)
## file paths
input_spectraPaths <- c(system.file('cdf/KO/ko15.CDF', package = "faahKO"),
system.file('cdf/KO/ko16.CDF', package = "faahKO"),
system.file('cdf/KO/ko18.CDF', package = "faahKO"))
input_spectraPaths
#> [1] "/home/biocbuild/bbs-3.10-bioc/R/library/faahKO/cdf/KO/ko15.CDF"
#> [2] "/home/biocbuild/bbs-3.10-bioc/R/library/faahKO/cdf/KO/ko16.CDF"
#> [3] "/home/biocbuild/bbs-3.10-bioc/R/library/faahKO/cdf/KO/ko18.CDF"
Expected regions of interest (targeted features) are specified using the following information:
cpdID
(numeric)cpdName
(character)rtMin
(sec)rtMax
(sec)rt
(sec, optional / NA
)mzMin
(m/z)mzMax
(m/z)mz
(m/z, optional / NA
)Below we define 2 features of interest that are present in the faahKO dataset and can be employed in subsequent vignettes:
# targetFeatTable
input_targetFeatTable <- data.frame(matrix(vector(), 2, 8, dimnames=list(c(),
c("cpdID", "cpdName", "rtMin", "rt", "rtMax", "mzMin",
"mz", "mzMax"))), stringsAsFactors=FALSE)
input_targetFeatTable[1,] <- c(1, "Cpd 1", 3310., 3344.888, 3390., 522.194778,
522.2, 522.205222)
input_targetFeatTable[2,] <- c(2, "Cpd 2", 3280., 3385.577, 3440., 496.195038,
496.2, 496.204962)
input_targetFeatTable[,c(1,3:8)] <- sapply(input_targetFeatTable[,c(1,3:8)],
as.numeric)
cpdID | cpdName | rtMin | rt | rtMax | mzMin | mz | mzMax |
---|---|---|---|---|---|---|---|
1 | Cpd 1 | 3310 | 3344.888 | 3390 | 522.194778 | 522.2 | 522.205222 |
2 | Cpd 2 | 3280 | 3385.577 | 3440 | 496.195038 | 496.2 | 496.204962 |
Saghatelian, A., S. A. Trauger, E. J. Want, E. G. Hawkins, G. Siuzdak, and B. F. Cravatt. 2004. “Assignment of Endogenous Substrates to Enzymes by Global Metabolite Profiling.” Biochemistry 43:14332–9. http://dx.doi.org/10.1021/bi0480335.