
lpNet

Bettina Knapp, Marta R. A. Matos, Johanna Mazur and Lars Kaderali

October 29, 2019

Contents

1 Introduction 1

2 Data 2

3 Starting 2

4 Leave-One-Out cross-validation 3

5 K-fold cross-validation 5

6 Integrating prior knowledge 5

7 Example on Real Data 7

1 Introduction

This package infers networks using perturbation data, either steady-state
or time-series, with a linear optimization program as published in [KK13]
and [Mat13]. In section 2, the idea of the network inference method and
the type of data that can be used is explained. Section 3 shows how to
use the package on a quick example. In section 4 and 5, Leave-One-Out
cross-validation (LOOCV) and k-fold cross-validation are used to find the
best parameter λ which minimizes the mean squared error (MSE) of the
used objective function as described in [KK13]. Section 6 exemplifies how
prior knowledge can be included in the network inference process. Finally, in
section 7 we applied the network inference method on a real data set studying
ERBB signaling in trastuzumab resistant breast cancer cells [SFL+09].

1

2 Data

The method proposed in this package aims at reconstructing intracellular
signal transduction networks from perturbation data, either steady-state or
time-series. We consider signal transduction as an information flow through
a network where nodes represent genes (or proteins) and edges represent
the continuous strengths of interactions between the nodes (genes or pro-
teins). By using experimental interventions the flow in the network can be
perturbed and this leads to a problem which is an inverse to the well-known
maximum-flow / minimum cut problem in graph theory. The flow through
the network is perturbed by different cuts and the measured effect can be
used to reconstruct the underlying graph. We formulate this problem as a
linear program which can be solved efficiently using the simplex algorithm.

The perturbation experiments can be performed for example using RNA
interference (RNAi) which allows to specifically silence one or several genes
at the same time. To quantify the effect of a perturbation on the remain-
ing genes, for instance, flow cytometry or gene expression measurements
[SPP+05, SFL+09] can be used.

3 Starting

This section shows a first small example to infer signaling networks from
perturbation data using the linear programming (LP) approach. First load
the lpNet package.

> library("lpNet")

Then, define details about the perturbation data which is used for the
network inference. When using steady-state data, define the number of
genes and the number of perturbation experiments which are given. There-
after, we define a random observation matrix and define threshold δi as the
mean of the observations of each gene i ∈ {1, . . . , n}. Although here we
define a δ value per gene, these values can also be defined for each gene and
perturbation experiment, for each gene and time-point, etc.

> n <- 5 # number of genes

> K <- 7 # number of perturbation experiments

> obs <- matrix(rnorm(n*K), nrow=n, ncol=K)

> delta <- apply(obs, 1, mean)

> delta_type <- "perGene"

2

> # perturbation vector (0 if gene inactivated and 1 otherwise)

> b <- c(0,1,1,1,1, # perturbation exp1

+ 1,0,1,1,1, # perturbation exp2

+ 1,1,0,1,1, # perturbation exp3...

+ 1,1,1,0,1,

+ 1,1,1,1,0,

+ 1,0,0,1,1,

+ 1,1,1,1,1)

Using this, the network can be inferred with the LP method for a specific
penalty parameter λ with the function “doILP”. To convert the result of the
“doILP” function into an adjacency matrix use “getAdja”.

> res1 <- doILP(obs, delta, lambda=1, b, n, K, T_=NULL,

+ annot=getEdgeAnnot(n), delta_type)

> adja1 <- getAdja(res1, n)

If the inferred network is assumed to have activating edges only, this can
be used during the network reconstruction.

> res2 <- doILP(obs, delta, lambda=1, b, n, K, T_=NULL,

+ annot=getEdgeAnnot(n,allpos=TRUE), delta_type,

+ all.pos=TRUE)

> adja2 <- getAdja(res2,n)

If using time-series data, the number of time points in the data needs
to be defined, and the observation matrix becomes a 3-dimensional array,
where the third dimension represents time-points:

> T_ <- 4 # number of time points

> obs_ts <- array(rnorm(n*K*T_), c(n,K,T_))

Besides, flag time series needs to be set to TRUE when executing doILP:

> res1 <- doILP(obs_ts, delta, lambda=1, b, n, K, T_,

+ annot=getEdgeAnnot(n), delta_type,

+ flag_time_series=TRUE)

> adja1 <- getAdja(res1, n)

4 Leave-One-Out cross-validation

If the penalty parameter λ is not given, it can be determined using a stratified
LOOCV of the data. First, the parameters (mean and standard deviation)

3

for the two Gaussian distributions representing activation and deactivation
have to be defined. Also, these parameters values can be different for each
gene, gene + perturbation experiment, gene + time point, etc.

> active_mu <- 1.1

> inactive_mu <- 0.9

> active_sd <- inactive_sd <- 0.01

> mu_type <- "single"

These parameters are used in each step of the LOOCV to compute the
MSE. For this, the learned network (of the respective step) is used to predict
if the removed observation is supposed to be in active or inactive state and
thus, is sampled from the normal distribution of activated or inactivated
genes, respectively.

> times <- 5 # number of times the removed observation is sampled

> annot_node <- seq(1,n) # annotation of the nodes

> loocv_res <- loocv(kfold=NULL, times, obs, delta, lambda=1,

+ b, n, K, T_=NULL, annot=getEdgeAnnot(n),

+ annot_node, active_mu, active_sd,

+ inactive_mu, inactive_sd, mu_type,

+ delta_type)

> loocv_res$MSE

The“loocv”function results in a list giving the MSE and the edge weights
learned in each LOOCV step. The weights are finally summarized to com-
pute an adjacency matrix.

> adja_loocv <- getSampleAdjaMAD(loocv_res$edges_all, n,

+ annot_node)

If the MSE is computed for several values of λ, the minimal MSE de-
termines the best λ. To restrict the range of possible lambda the function
“calcRangeLambda” can be used.

> lambda <- calcRangeLambda(obs, delta, delta_type)

> MSE <- Inf

> for (lamd in lambda) {

+ loocv_res <- loocv(kfold=NULL, times, obs, delta, lambda=lamd,

+ b, n, K, T_=NULL, annot=getEdgeAnnot(n),

+ annot_node, active_mu, active_sd,

+ inactive_mu, inactive_sd, mu_type,

+ delta_type)

4

+ if (loocv_res$MSE < MSE) {

+ MSE <- loocv_res$MSE

+ edges_all <- loocv_res$edges_all

+ bestLambda <- lamd

+ }

+ }

> adja_bestLambda <- getSampleAdjaMAD(edges_all, n, annot_node)

If using time-series data, only the flag time series needs to be set to
TRUE when executing loocv and calcRangeLambda.

5 K-fold cross-validation

Instead of using LOOCV a k-fold cross-validation can be used to compute
the λ which minimizes the MSE.

> kfold <- 5

> MSE <- Inf

> for (lamd in lambda) {

+ kcv_res <- kfoldCV(kfold, times, obs, delta, lambda=lamd,

+ b, n, K, T_=NULL, annot=getEdgeAnnot(n),

+ annot_node, active_mu, active_sd,

+ inactive_mu, inactive_sd, mu_type,

+ delta_type)

+ if (kcv_res$MSE < MSE) {

+ MSE <- kcv_res$MSE

+ edges_all <- kcv_res$edges_all

+ bestLambda <- lamd

+ }

+ }

> adja_bestLambda <- getSampleAdjaMAD(edges_all, n, annot_node)

If using time-series data, only the flag time series needs to be set to
TRUE when executing kfoldCV.

6 Integrating prior knowledge

For the integration of prior knowledge, such as the information of source
and sink nodes, this can be used in the LP network inference approach by
setting the corresponding parameters.

5

> res3 <- doILP(obs, delta, lambda=1, b, n, K, T_=NULL,

+ annot=getEdgeAnnot(n), delta_type,

+ sourceNode=1, sinkNode=5)

> adja3 <- getAdja(res3,n)

Similary, additional constraints defining prior knowledge on individual
edges can be formulated and added as a list to the “doILP” function. The
prior of each individual edge consists of a vector of four elements with the
first element being the annotation of the edge (see function“getEdgeAnnot”)
and the second being the coefficient of the objective function. The third,
respectively the fourth elements correspond to the direction, respectively the
right-hand side of the constraint. For example, assume that we know that
the edge weight between node 1 and node 2 (w+

12) is greater than 1, it is
defined as follows:

> prior <- list(c("w+_1_2", 1, ">", 1))

> res4 <- doILP(obs,delta, lambda=1, b, n, K, T_=NULL,

+ annot=getEdgeAnnot(n), delta_type,

+ prior=prior)

> adja4 <- getAdja(res4, n)

The prior knowledge can be extracted from databases such as KEGG
or Reactome. Using, for example, the “KEGGgraph” package [ZW09] in
combination with lpNet allows to import already known activations or de-
activations between two genes. Thus, this information can be used to define
the positive (w+) or the negative weight (w−) of the corresponding edges to
be bigger than 1 in the prior constraints of the LP method.
If there is additionally a confidence score given for the edge, this can be
taken into account by defining the second element in the prior knowledge
list accordingly. Assuming that the edge between node 1 and node 2 has a
confidence score of 0.9, this translates into:

> prior <- list(c("w+_1_2", 1/0.9, ">", 1))

> res5 <- doILP(obs, delta, lambda=1, b, n, K, T_=NULL,

+ annot=getEdgeAnnot(n), delta_type,

+ prior=prior)

> adja5 <- getAdja(res5, n)

Considering a small example based on KEGG where we 1) load a network
from KEGG, 2) include non-null edges as prior knowledge, and 3) solve the
LP problem:

6

> library("KEGGgraph")

> toyKGML <- system.file("extdata/kgml-ed-toy.xml", package="KEGGgraph")

> toyGraph <- parseKGML2Graph(toyKGML, genesOnly=FALSE)

> adja <- as(toyGraph,"matrix")

> entries <- which(adja!=0, arr.ind=TRUE)

> ### use apply to set the prior from a given adjacency matrix

> myFun <- function(el, sign, confidence, rhs) {

+ prior <- c(sprintf("w+_%s_%s", el[[1]][1], el[[1]][2],

+ adja[el[[1]][1],el[[1]][2]]), confidence, sign, rhs)

+ }

> prior <- lapply(apply(entries,1,list), myFun, ">", 1, 1)

> res5 <- doILP(obs, delta, lambda=1, b, n, K, T_=NULL,

+ annot=getEdgeAnnot(n), delta_type,

+ prior=prior)

> adja5 <- getAdja(res5, n)

7 Example on Real Data

In the following we use data from the “nem” package which consists of com-
binatorial knockdowns in the ERBB signaling pathway [SFL+09, FMT+].
Given are 17 experiments of 16 proteins in the ERBB signaling pathway
of trastuzumab resistant breast cancer cells. The experiments include 13
single knockdowns, 3 double knockdowns and one experiment without any
perturbation. After the knockdowns, Reverse Phase Protein Array (RPPA)
measurments were performed for ten signaling intermediates before and af-
ter EGF stimulation. For each experiment, four technical and three bio-
logical replicates are given. First, we load the data and preprocess it. For
this, we separate it into unstimulated (time=0) and stimulated (time=1)
experiments and summarize the different replicate measurements of each
experiment by taking the mean.

> data("SahinRNAi2008")

> dataStim <- dat.normalized[dat.normalized[,17] == 1,-17]

> dataUnstim <- dat.normalized[dat.normalized[,17] == 0,-17]

> # summarize replicates; transpose: rows=genes, cols=experiments

> dataSt <- t(summarizeRepl(dataStim, type=mean))

> dataUnst <- t(summarizeRepl(dataUnstim, type=mean))

Next, the parameters which are needed for the network inference need
to be defined. The perturbation vector describes the given knockdown ex-
periments.

7

> n <- 16 # number of genes

> K <- 16 # number of experiments

> annot <- getEdgeAnnot(n)

> # perturbation vector; kd of:

> b <- c(0,rep(1,15), # erbb1

+ 0,0,rep(1,14), # erbb1 & 2

+ 0,rep(1,14),0, # erbb1 & 3

+ 1,0,rep(1,13),0, # erbb2 & 3

+ rep(1,10),0,1,1,1,1,1, # IGFR

+ rep(1,11),0,1,1,1,1, # ERalpha

+ rep(1,12),0,1,1,1, # MYC

+ rep(1,7),0,rep(1,8), # AKT1

+ rep(1,8),0,rep(1,7), # MEK1

+ rep(1,5),0,rep(1,10), # CDK2

+ rep(1,6),0,rep(1,9), # CDK4

+ rep(1,13),0,1,1, # CDK6

+ 1,1,0,rep(1,13), # p21

+ 1,1,1,0,rep(1,12), # p27

+ rep(1,4),0,rep(1,11), # Cyclin D1

+ rep(1,14),0,1) # Cyclin E1

For the computation of the parameters δi, we use the unstimulated data
of the MOCK control (experiment without any perturbation). For four
proteins no measurements are given, and no δ can be computed from the
MOCK control. Here, we use the average of all measurements of MOCK in
the unstimulated setting.

> delta <- as.double(dataUnst[,1])

> delta[11:16] <- mean(dataUnst[,1], na.rm=T)

We infer the network using the LP method with source nodes ERBB1,
ERBB2 and ERBB3, and sink node pRB1. The parameter λ = 1.83 has
been identified using LOOCV (not shown due to run time reasons) to be the
one with minimum MSE.

> resERBB <- doILP(dataSt[,-1], delta, lambda=1.83,

+ b, n, K, T_=NULL, annot,

+ delta_type, all.pos=FALSE,

+ sourceNode=c(1,2,16), sinkNode=10)

> adjaERBB <- getAdja(resERBB,n)

8

References

[FMT+] H. Froehlich, F. Markowetz, A. Tresch, T. Niederberger, C. Ben-
der, M. Maneck, C. Lottaz, and T. Beissbarth, nem: Nested ef-
fects models to reconstruct phenotypic hierarchies, R package ver-
sion 2.32.1.

[KK13] Bettina Knapp and Lars Kaderali, Reconstruction of cellular sig-
nal transduction networks using perturbation assays and linear
programming, PLoS ONE 8 (2013), no. 7, e69220.

[Mat13] Marta R. A. Matos, Network inference : extension of linear pro-
gramming model for time-series data, Master’s thesis, Depart-
ment of Informatics, University of Minho, Campus Gualtar, 4710-
057 Braga, Portugal, October 2013.

[SFL+09] O. Sahin, H. Froehlich, C. Lobke, U. Korf, S. Burmester,
M. Majety, J. Mattern, I. Schupp, C. Chaouiya, D. Thieffry,
A. Poustka, S. Wiemann, T. Beissbarth, and D. Arlt, Modeling
ERBB receptor-regulated G1/S transition to find novel targets for
de novo trastuzumab resistance, BMC Syst Biol 3 (2009), 1.

[SPP+05] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P.
Nolan, Causal protein-signaling networks derived from multipa-
rameter single-cell data, Science 308 (2005), no. 5721, 523–529.

[ZW09] J. D. Zhang and S. Wiemann, KEGGgraph: a graph approach
to KEGG PATHWAY in R and bioconductor, Bioinformatics 25
(2009), no. 11, 1470–1471.

9

