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Abstract

This vignette illustrates diagnostics that are intended to help with
• the choice of filter criterion and
• the choice of filter cutoff

in independent filtering [1]. The package genefilter provides functions that might be conve-
nient for this purpose.

1 Introduction

Multiple testing approaches, with thousands of tests, are often used in analyses of genome-
scale data. For instance, in analyses of differential gene expression based on RNA-Seq or
microarray data, a common approach is to apply a statistical test, one by one, to each
of thousands of genes, with the aim of identifying those genes that have evidence for a
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statistical association of their expression measurements with the experimental covariate(s)
of interest. Another instance is differential binding detection from ChIP-Seq data. The
idea of independent filtering is to filter out those tests from the procedure that have no,
or little chance of showing significant evidence, without even looking at their test statistic.
Typically, this results in increased detection power at the same experiment-wide type I error,
as measured in terms of the false discovery rate. A good choice for a filtering criterion is one
that

1. is statistically independent from the test statistic under the null hypothesis,
2. is correlated with the test statistic under the alternative, and
3. does not notably change the dependence structure –if there is any– of the joint test

statistics (including those corresponding to true nulls and to true alternatives).
The benefit from filtering relies on property 2, and I will explore that further in Section 3.
The statistical validity of filtering relies on properties 1 and 3. For many practically useful
combinations of filter criteria with test statistics, property 1 is easy to prove (e. g., through
Basu’s theorem). Property 3 is more complicated, but rarely presents a problem in practice:
if, for the multiple testing procedure that is being used, the correlation structure of the tests
was acceptable without filtering, the filtering should not change that. Please see [1] for
further discussion on the mathematical and conceptual background.

2 Example data set

For illustration, let us use the pasillaGenes dataset from the Bioconductor package pasilla;
this is an RNA-Seq dataset from which we extract gene-level read counts for two replicate
samples the were measured for each of two biological conditions: normally growing cells and
cells treated with dsRNA against the Pasilla mRNA, which led to RNAi interference (RNAi)
mediated knockdown of the Pasilla gene product.
library("pasilla")

data("pasillaGenes")

We perform a standard analysis with DESeq to look for genes that are differentially expressed
between the normal and Pasilla-knockdown conditions, indicated by the factor variable condi

tion. In the generalized linear model (GLM) analysis, we adjust for an additional experimental
covariate type, which is however not of interest for the differential expression. For more
details, please see the vignette of the DESeq package.
library("DESeq")

cds = estimateSizeFactors( pasillaGenes )

cds = estimateDispersions( cds )

fit1 = fitNbinomGLMs( cds, count ~ type + condition )

fit0 = fitNbinomGLMs( cds, count ~ type )

res = data.frame(

filterstat = rowMeans(counts(cds)),

pvalue = nbinomGLMTest( fit1, fit0 ),

row.names = featureNames(cds) )
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The details of the anove analysis are not important for the purpose of this vignette, the
essential output is contained in the columns of the dataframe res:

• filterstat: the filter statistic, here the average number of counts per gene across all
samples, irrespective of sample annoation,

• pvalue: the test p-values,
Each row of the dataframe corresponds to one gene:
dim(res)

## [1] 14470 2

head(res)

## filterstat pvalue

## FBgn0000003 0.143 0.4601

## FBgn0000008 54.714 0.9747

## FBgn0000014 0.429 0.8395

## FBgn0000015 0.857 0.7274

## FBgn0000017 2507.429 0.0963

## FBgn0000018 239.286 0.6794

3 Qualitative assessment of the filter statistic

First, consider Figure 1, which shows that among the approximately 40% of genes with lowest
overall counts, filterstat, there are essentially none that achieved an (unadjusted) p-value
less than 0.003 (this corresponds to about 2.5 on the − log10-scale).
with(res,

plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45))

trsf = function(n) log10(n+1)

plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="")

Figure 1: Left: scatterplot of the rank (scaled to [0, 1]) of the filter criterion filterstat (x-axis) versus
the negative logarithm of the test pvalue (y-axis)
Right: the empirical cumulative distribution function (ECDF) shows the relationships between the values of
filterstat and its quantiles.

This means that by dropping the 40% genes with lowest filterstat, we do not loose anything
substantial from our subsequent results.
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For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers
interpreted as a decimal number. The analogous scatterplot to that of Figure 1 is shown in
Figure 2.
badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res)))

plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45)

Figure 2: Scatterplot analogous to Figure 1, but with badfilter

4 How to choose the filter statistic and the cutoff?

The filtered_p function in the genefilter package calculates adjusted p-values over a range
of possible filtering thresholds. Here, we call this function on our results from above and
compute adjusted p-values using the method of Benjamini and Hochberg (BH) for a range
of different filter cutoffs.
library("genefilter")

theta = seq(from=0, to=0.5, by=0.1)

pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as differentially ex-
pressed) as a function of the FDR threshold (x-axis) and the filtering cutoff θ (line colours, specified
as quantiles of the distribution of the filter statistic)
The plot is produced by the rejection_plot function. Note that the lines for θ = 0% and 10% are overplot-
ted by the line for θ = 20%, since for the data shown here, these quantiles correspond all to the same set
of filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of θ.
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head(pBH)

## 0% 10% 20% 30% 40% 50%

## [1,] 0.895 0.895 0.895 NA NA NA

## [2,] 0.997 0.997 0.997 0.998 0.995 0.993

## [3,] 0.981 0.981 0.981 NA NA NA

## [4,] 0.960 0.960 0.960 0.970 NA NA

## [5,] 0.593 0.593 0.593 0.517 0.452 0.412

## [6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns
to the BH-adjusted p-values for the different possible choices of cutoff theta. A value of
NA indicates that the gene was filtered out at the corresponding filter cutoff. The rejec

tion_plot function takes such a matrix and shows how rejection count (R) relates to the
choice of cutoff for the p-values. For these data, over a reasonable range of FDR cutoffs,
increased filtering corresponds to increased rejections.
rejection_plot(pBH, at="sample",

xlim=c(0, 0.5), ylim=c(0, 2000),

xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cutoff

If we select a fixed cutoff for the adjusted p-values, we can also look more closely at the rela-
tionship between the fraction of null hypotheses filtered and the total number of discoveries.
The filtered_R function wraps filtered_p and just returns rejection counts. It requires you
to choose a particular p-value cutoff, specified through the argument alpha.
theta = seq(from=0, to=0.8, by=0.02)

rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain)
discards both false and true null hypotheses, very large values of θ reduce power in this
example:
plot(theta, rejBH, type="l",

xlab=expression(theta), ylab="number of rejections")

The plot is shown in the right panel of Figure 3.

4.2 Choice of filtering statistic

We can use the analysis of the previous section 4.1 also to inform ourselves about different
possible choices of filter statistic. We construct a dataframe with a number of different
choices.
filterChoices = data.frame(

`mean` = res$filterstat,
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Figure 4: The number of rejections at FDR=10% as a function of θ (analogous to the right panel in
Figure 3) for a number of different choices of the filter statistic

`geneID` = badfilter,

`min` = rowMin(counts(cds)),

`max` = rowMax(counts(cds)),

`sd` = rowSds(counts(cds))

)

rejChoices = sapply(filterChoices, function(f)

filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH"))

library("RColorBrewer")

myColours = brewer.pal(ncol(filterChoices), "Set1")

matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2,

xlab=expression(theta), ylab="number of rejections")

legend("bottomleft", legend=colnames(filterChoices), fill=myColours)

The result is shown in Figure 4. It indicates that for the data at hand, mean, max and sd

provide similar performance, whereas the other choices are less effective.

5 Some more plots pertinent to multiple testing

5.1 Joint distribution of filter statistic and p-values

The left panel of Figure 1 shows the joint distribution of filter statistic and p-values. An
alternative, perhaps simpler view is provided by the p-value histograms in Figure 5. It shows
how the filtering ameliorates the multiple testing problem – and thus the severity of a mul-
tiple testing adjustment – by removing a background set of hypotheses whose p-values are
distributed more or less uniformly in [0, 1].
h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE)

h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE)

colori <- c(`do not pass`="khaki", `pass`="powderblue")
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barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))
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Figure 5: Histogram of p-values for all tests
The area shaded in blue indicates the subset of those that pass the filtering, the area in khaki those that do
not pass.

5.2 Illustration of the Benjamini-Hochberg method

The Benjamini-Hochberg multiple testing adjustment procedure [2] has a simple graphical
illustration, which is produced in the following code chunk. Its result is shown in the left
panel of Figure 6.
resFilt = res[pass,]

orderInPlot = order(resFilt$pvalue)

showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06)

alpha = 0.1

plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot],

pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i]))

abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2)

5.3 Schweder and Spjøtvoll plot

Schweder and Spjøtvoll [3] suggested a diagnostic plot of the observed p-values which permits
estimation of the fraction of true null hypotheses. For a series of hypothesis tests H1, . . . ,Hm

with p-values pi, they suggested plotting

(1− pi, N(pi)) for i ∈ 1, . . . ,m, 1

where N(p) is the number of p-values greater than p. An application of this diagnostic plot
to resFilt$pvalue is shown in the right panel of Figure 6. When all null hypotheses are true,
the p-values are each uniformly distributed in [0, 1], Consequently, the cumulative distribution
function of (p1, . . . , pm) is expected to be close to the line F (t) = t. By symmetry, the
same applies to (1 − p1, . . . , 1 − pm). When (without loss of generality) the first m0 null
hypotheses are true and the other m−m0 are false, the cumulative distribution function of
(1 − p1, . . . , 1 − pm0) is again expected to be close to the line F0(t) = t. The cumulative
distribution function of (1−pm0+1, . . . , 1−pm), on the other hand, is expected to be close to
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a function F1(t) which stays below F0 but shows a steep increase towards 1 as t approaches
1. In practice, we do not know which of the null hypotheses are true, so we can only observe
a mixture whose cumulative distribution function is expected to be close to

F (t) =
m0

m
F0(t) +

m−m0

m
F1(t). 2

Such a situation is shown in the right panel of Figure 6. If F1(t)/F0(t) is small for small t,
then the mixture fraction m0

m can be estimated by fitting a line to the left-hand portion of
the plot, and then noting its height on the right. Such a fit is shown by the red line in the
right panel of Figure 6.
plot(1-resFilt$pvalue[orderInPlot],

(length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i",

xlab=expression(1-p[i]), ylab=expression(N(p[i])))

abline(a=0, slope, col="red3", lwd=2)

abline(h=slope)

text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3))

Figure 6: Left: illustration of the Benjamini-Hochberg multiple testing adjustment procedure [2]
The black line shows the p-values (y-axis) versus their rank (x-axis), starting with the smallest p-value
from the left, then the second smallest, and so on. Only the first 1503 p-values are shown. The red line
is a straight line with slope α/n, where n = 8647 is the number of tests, and α = 0.1 is a target false
discovery rate (FDR). FDR is controlled at the value α if the genes are selected that lie to the left of the
rightmost intersection between the red and black lines: here, this results in 796 genes. Right: Schweder
and Spjøtvoll plot, as described in the text.

Session information

• R version 3.6.1 (2019-07-05), x86_64-pc-linux-gnu
• Running under: Ubuntu 18.04.3 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils
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• Other packages: Biobase 2.46.0, BiocGenerics 0.32.0, DESeq 1.38.0,
RColorBrewer 1.1-2, genefilter 1.68.0, knitr 1.25, lattice 0.20-38, locfit 1.5-9.1,
pasilla 1.13.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.48.0,
BiocManager 1.30.9, BiocStyle 2.14.0, DBI 1.0.0, IRanges 2.20.0, Matrix 1.2-17,
RCurl 1.95-4.12, RSQLite 2.1.2, Rcpp 1.0.2, S4Vectors 0.24.0, XML 3.98-1.20,
annotate 1.64.0, backports 1.1.5, bit 1.1-14, bit64 0.9-7, bitops 1.0-6, blob 1.2.0,
codetools 0.2-16, compiler 3.6.1, crayon 1.3.4, digest 0.6.22, evaluate 0.14,
geneplotter 1.64.0, grid 3.6.1, highr 0.8, htmltools 0.4.0, magrittr 1.5, memoise 1.1.0,
pillar 1.4.2, pkgconfig 2.0.3, rlang 0.4.1, rmarkdown 1.16, splines 3.6.1, stats4 3.6.1,
stringi 1.4.3, stringr 1.4.0, survival 2.44-1.1, tibble 2.1.3, tools 3.6.1, vctrs 0.2.0,
xfun 0.10, xtable 1.8-4, yaml 2.2.0, zeallot 0.1.0
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