
OmnipathR: utility functions to work with
Omnipath in R

Alberto Valdeolivas ∗1, Attila Gabor †1, Denes Turei ‡1, and
Julio Saez-Rodriguez §1,2

1Institute of Computational Biomedicine, Heidelberg University, Faculty of Medicine, 69120
Heidelberg, Germany
2RWTH Aachen University, Faculty of Medicine,Joint Research Centre for Computational
Biomedicine (JRC-COMBINE), 52074 Aachen, Germany
∗alvaldeolivas@gmail.com †attila.gabor@bioquant.uni-heidelberg.de ‡denes.turei@embl.de
§julio.saez@bioquant.uni-heidelberg.de

March 26, 2020

Abstract

This vignette describes how to use the OmnipathR package to retrieve information from the
Omnipath database:
http://omnipathdb.org/
In addition, it includes some utility functions to filter, analyse and visualize the data.

Package

OmnipathR 1.0.1
Feedbacks and bugreports are always very welcomed!
Please use the Github issue page to report bugs or for questions:
https://github.com/saezlab/OmnipathR/issues
Many thanks for using OmnipathR!

mailto:alvaldeolivas@gmail.com
mailto:attila.gabor@bioquant.uni-heidelberg.de
mailto:denes.turei@embl.de
mailto:julio.saez@bioquant.uni-heidelberg.de
http://bioconductor.org/packages/OmnipathR
http://omnipathdb.org/
https://github.com/saezlab/OmnipathR/issues
http://bioconductor.org/packages/OmnipathR

OmnipathR: utility functions to work with Omnipath in R

Contents

1 Introduction . 3

1.1 Query types . 3

1.2 Mouse and rat . 4

2 Installation of the OmnipathR package 4

3 Usage Examples . 5

3.1 Interactions. 5
3.1.1 Protein-protein interaction networks 6
3.1.2 Other interaction datasets 7

3.2 Post-translational modifications (PTMs) 10

3.3 Complexes . 12

3.4 Annotations . 13

3.5 Intercell . 15

3.6 Conclusion . 17

A Session info . 20

2

http://bioconductor.org/packages/OmnipathR

OmnipathR: utility functions to work with Omnipath in R

1 Introduction

OmnipathR is an R package built to provide easy access to the data stored in the Omnipath
webservice [1]:
http://omnipathdb.org/
The webservice implements a very simple REST style API. This package make requests by
the HTTP protocol to retreive the data. Hence, fast Internet access is required for a proper
use of OmnipathR.

1.1 Query types

OmnipathR can retrieve five different types of data:
• Interactions: protein-protein interactions organized in different datasets:

• Omnipath: the OmniPath data as defined in the original publication [1] and
collected from different databases.

• Pathwayextra: activity flow interactions without literature reference.
• Kinaseextra: enzyme-substrate interactions without literature reference.
• Ligrecextra: ligand-receptor interactions without literature reference.
• Tfregulons: transcription factor (TF)-target interactions from DoRothEA [2, 3].
• Mirnatarget: miRNA-mRNA and TF-miRNA interactions.

• Post-translational modifications (PTMs): It provides enzyme-substrate reactions in
a very similar way to the aforementioned interactions. Some of the biological databases
related to PTMs integrated in Omnipath are Phospho.ELM [4] and PhosphoSitePlus
[5].

• Complexes: it provides access to a comprehensive database of more than 22000 protein
complexes. This data comes from different resources such as: CORUM [6] or Hu.map
[7].

• Annotations: it provides a large variety of data regarding different annotations about
proteins and complexes. These data come from dozens of databases covering different
topics such as: The Topology Data Bank of Transmembrane Proteins (TOPDB) [8]
or ExoCarta [9], a database collecting the proteins that were identified in exosomes in
multiple organisms.

• Intercell: it provides information on the roles in inter-cellular signaling. For instance.
if a protein is a ligand, a receptor, an extracellular matrix (ECM) component, etc. The
data does not come from original sources but combined from several databases by us.
The source databases, such as CellPhoneDB [10] or Receptome [11], are also referred
for each reacord.

Figure 1 shows an overview of the resources featured in OmniPath. For more detailed
information about the original data sources integrated in Omnipath, please visit: http:
//omnipathdb.org/ and http://omnipathdb.org/info.

3

http://bioconductor.org/packages/OmnipathR
http://omnipathdb.org/
http://bioconductor.org/packages/OmnipathR
http://bioconductor.org/packages/OmnipathR
http://omnipathdb.org/
http://omnipathdb.org/
http://omnipathdb.org/info

OmnipathR: utility functions to work with Omnipath in R

>>>

>>>
Tissue patterns

Expression

HPA
HPM
Prot.DB

Gene Ontology

Function

GO
MSigDB
KEGG

Compound

target binding

Intervention

ChEMBL
LINCS
UniChem

>>>>>

Post-translational

modi�cations (9)

Protein

complexes (3)

Domains and

3D structures (4)

Structure & Mechanism

Subcellular

localization (2)

miRecords
miRTarBase

ComPPI
Gene Ontology

dbPTM
ELM
HPRD
LMPID
MIMP
Phospho.ELM
PhosphoNetw.
PhosphoSite
Signor

3DComplexes
CORUM
Havugimana

Protein-protein interaction

resources (34)

> > >

Activity �ow (12)

ARN+

CA1+

CancerCellMap*

DeathDomain

Guide2Pharma+

Macrophage+

NRF2ome+

PDZbase*

SignaLink3+

Signor+

SPIKE+

TRIP+

Undirected PPI (8)

BioGRID

DIP

HPRD

InnateDB

IntAct

MatrixDB

MPPI

Vidal HI-III

PANTHER

Reactome

WikiPathways

Enzyme-substrate (8)

dbPTM*

DEPOD*

DOMINO

ELM

HPRD-phos*

LMPID

phospho.ELM*

PhosphoSite*

Process description (6)

ACSN

NCI-PID

NetPath

OmniPath &
pypath

Uni�ed network of pathways

with annotations

CellPhoneDB
Guide2Pharma

> > >
miR2Disease
miRDeathDB

HPMR
Kirouac 2010

3DCompexes
3DID
Instruct
Interactome3D

Homology translation

Mouse, rat

Ligand-receptor (6)miRNA regulation (4)

>>>
HTRI
ORegAnno
PAZAR

TF Regulons
ABS
ENCODE

Signor
TransmiR

Transcriptional regulation (8)

Violet color: New since last publication (Nov 2016)

Ramilowski 2015
Gene Ontology

Signor
SignaLink

Extracellular

ExoCarta
Gene Ontology
HPMR
Matrisome

Membranome
Surfaceome
Surf. Prot. Atl.
Vesiclepedia

Figure 1: Overview of the resources featured in OmniPath
Causal resources (including activity-flow and enzyme-substrate resources) can provide direction (*) or sign
and direction (+) of interactions.

1.2 Mouse and rat

Excluding the miRNA interactions, all interactions and PTMs are available for human, mouse
and rat. The rodent data has been translated from human using the NCBI Homologene
database. Many human proteins do not have known homolog in rodents hence rodent datasets
are smaller than their human counterparts.
In case you work with mouse omics data you might do better to translate your dataset
to human (for example using the pypath.homology module, https://github.com/saezlab/
pypath/) and use human interaction data.

2 Installation of the OmnipathR package

First of all, you need a current version of R (www.r-project.org). OmnipathR is a freely
available package deposited on http://bioconductor.org/ and https://github.com/saezlab/
OmnipathR. You can install it by running the following commands on an R console:

4

https://github.com/saezlab/pypath/
https://github.com/saezlab/pypath/
http://bioconductor.org/packages/OmnipathR
(www.r-project.org)
http://bioconductor.org/packages/OmnipathR
http://bioconductor.org/
https://github.com/saezlab/OmnipathR
https://github.com/saezlab/OmnipathR

OmnipathR: utility functions to work with Omnipath in R

> if (!requireNamespace("BiocManager", quietly = TRUE))

+ install.packages("BiocManager")

> BiocManager::install("OmnipathR")

3 Usage Examples

In the following paragraphs, we provide some examples to describe how to use the OmnipathR
package to retrieve different types of information from Omnipath webserver. In addition, we
play around with the data aiming at obtaining some biological relevant information.
Noteworthy, the sections complexes, annotations and intercell are linked. We explore the
annotations and roles in inter-cellular communications of the proteins involved in a given
complex. This basic example shows the usefulness of integrating the information avaiable in
the different Omnipath resources.

3.1 Interactions

Proteins interact among them and with other biological molecules to perform cellular func-
tions. Proteins also participates in pathways, linked series of reactions occurring inter/intra
cells to transform products or to transmit signals inducing specific cellular responses. Pro-
tein interactions are therefore a very valuable source of information to understand cellular
functioning.
We are going to download the original Omnipath human interactions [1]. To do so, we
first check the different source databases and select some of them. Then, we print some
of the downloaded interactions ("+" means activation, "-" means inhibition and "?" means
undirected interactions or inconclusive data).
> library(OmnipathR)

> library(tidyr)

> library(dnet)

> library(gprofiler2)

> ## We check some of the different interaction databases

> head(get_interaction_databases(),10)

[1] "TRIP" "DIP" "Wang" "KEGG" "BioGRID" "Fantom5" "HPRD"

[8] "LRdb" "KEA" "MIMP"

> ## The interactions are stored into a data frame.

> interactions <-

+ import_Omnipath_Interactions(filter_databases=c("SignaLink3","PhosphoSite",

+ "Signor"))

> ## We visualize the first interactions in the data frame.

> print_interactions(head(interactions))

source interaction target nsources nrefs

172 TRPM7 (Q96QT4) ==(+)==> ANXA1 (P04083) 13 15

99 SRC (P12931) ==(+)==> TRPV1 (Q8NER1) 9 8

45 PRKG1 (Q13976) ==(-)==> TRPC3 (Q13507) 9 6

75 PRKG1 (Q13976) ==(-)==> TRPC6 (Q9Y210) 8 5

5

http://bioconductor.org/packages/OmnipathR

OmnipathR: utility functions to work with Omnipath in R

118 LYN (P07948) ==(+)==> TRPV4 (Q9HBA0) 8 5

98 PRKACA (P17612) ==(+)==> TRPV1 (Q8NER1) 6 1

3.1.1 Protein-protein interaction networks

Protein-protein interactions are usually converted into networks. Describing protein inter-
actions as networks not only provides a convenient format for visualization, but also allows
applying graph theory methods to mine the biological information they contain.
We convert here our set of interactions to a network/graph (igraph object). Then, we apply
two very common approaches to extract information from a biological network:

• Shortest Paths: finding a path between two nodes (proteins) going through the mini-
mum number of edges. This can be very useful to track consecutive reactions within a
given pathway. We display below the shortest path between two given proteins and all
the possible shortests paths between two other proteins. It is to note that the functions
printPath_es and printPath_vs display very similar results, but the first one takes as
an input an edge sequence and the second one a node sequence.
> ## We transform the interactions data frame into a graph

> OPI_g <- interaction_graph(interactions = interactions)

> ## Find and print shortest paths on the directed network between proteins

> ## of interest:

> printPath_es(shortest_paths(OPI_g,from = "TYRO3",to = "STAT3",

+ output = 'epath')$epath[[1]],OPI_g)

source interaction target nsources nrefs

1 TYRO3 (Q06418) ==(?)==> AKT1 (P31749) 2 0

2 AKT1 (P31749) ==(?)==> BTK (Q06187) 3 1

3 BTK (Q06187) ==(?)==> STAT3 (P40763) 2 2

> ## Find and print all shortest paths between proteins of interest:

> printPath_vs(all_shortest_paths(OPI_g,from = "DYRK2",

+ to = "MAPKAPK2")$res,OPI_g)

• Clustering: grouping nodes (proteins) in such a way that nodes belonging to the same
group (called cluster) are more connected in the network to each other than to those
in other groups (clusters). Since proteins interact to perform their functions, proteins
within the same cluster are likely to be implicated in similar biological tasks. Figure 2
shows the subgraph containing the proteins and interactions of a specifc protein. The
igraph R package contains functions to apply sevaral different cluster methods on
graphs (visit https://igraph.org/r/doc/ for detailed information.)
> ## We apply a clustering algorithm (Louvain) to group proteins in

> ## our network. We apply here Louvain which is fast but can only run

> ## on undirected graphs. Other clustering algorithms can deal with

> ## directed networks but with longer computational times,

> ## such as cluster_edge_betweenness. These cluster methods are directly

> ## available in the igraph package.

> OPI_g_undirected <- as.undirected(OPI_g, mode=c("mutual"))

> cl_results <- cluster_louvain(OPI_g_undirected)

> ## We extract the cluster where a protein of interest is contained

6

http://bioconductor.org/packages/igraph
https://igraph.org/r/doc/

OmnipathR: utility functions to work with Omnipath in R

> cluster_id <- cl_results$membership[which(cl_results$names == "CD22")]

> module_graph <- induced_subgraph(OPI_g_undirected,

+ V(OPI_g)$name[which(cl_results$membership == cluster_id)])

> ## We print that cluster with its interactions.

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(module_graph, vertex.label.color="black",vertex.frame.color="#ffffff",

+ vertex.size= 15, edge.curved=.2,

+ vertex.color = ifelse(igraph::V(module_graph)$name == "CD22","yellow",

+ "#00CCFF"), edge.color="blue",edge.width=0.8)

ADAM15

ADRB2

CBL

CD22

CD33

CDH5

CDK4
FCGR2A

FGR

HCK

IRF8
LAIR1

LCK

LILRB1

LPAR2

LYN

MS4A2

PILRA

PLCG2

PRKACA

PTK2B

PTPN6
SHC1

SRC

SYK

TEK

TRIP6

VAV1

ZAP70

Figure 2:
Subnetwork extracted from the interactions graph representing the cluster where we can find the gene
CD22 (yellow node).

3.1.2 Other interaction datasets

We used above the interactions from the dataset described in the original Omnipath publica-
tion [1]. In this section, we provide examples on how to retry and deal with interactions from
the remaining datasets. The same functions can been applied to every interaction dataset.
In the first example, we are going to get the interactions from the pathwayextra dataset,
which contains activity flow interactions without literature reference. We are going to focus
on the mouse interactions for a given gene in this particular case.
> ## We query and store the interactions into a dataframe

> interactions <-

+ import_PathwayExtra_Interactions(filter_databases=c("BioGRID","IntAct"),

+ select_organism = 10090)

> ## We select all the interactions in which Amfr gene is involved

> interactions_Amfr <- dplyr::filter(interactions, source_genesymbol == "Amfr" |

+ target_genesymbol == "Amfr")

7

OmnipathR: utility functions to work with Omnipath in R

> ## We print these interactions:

> print_interactions(interactions_Amfr)

source interaction target nsources

1 Amfr (Q9R049) ==(+)==> Vcp (Q01853) 3

Next, we download the interactions from the kinaseextra dataset, which contains enzyme-
substrate interactions without literature reference. We are going to focus on rat reactions
targeting a particular gene.
> ## We query and store the interactions into a dataframe

> interactions <-

+ import_KinaseExtra_Interactions(filter_databases=c("PhosphoPoint",

+ "PhosphoSite"), select_organism = 10116)

> ## We select the interactions in which Dpysl2 gene is a target

> interactions_TargetDpysl2 <- dplyr::filter(interactions,

+ target_genesymbol == "Dpysl2")

> ## We print these interactions:

> print_interactions(interactions_TargetDpysl2)

source interaction target nsources

1 Gsk3b (P18266) ==(+/-)==> Dpysl2 (P47942) 18

2 Rock2 (Q62868) ==(+)==> Dpysl2 (P47942) 11

4 Cdk5 (Q03114) ==(+)==> Dpysl2 (P47942) 10

6 Rock1 (Q63644) ==(?)==> Dpysl2 (P47942) 8

5 Gsk3a (P18265) ==(?)==> Dpysl2 (P47942) 7

3 Fer (P09760) ==(?)==> Dpysl2 (P47942) 5

In the following example we are going to work with the ligrecextra dataset, which contains
ligand-receptor interactions without literature reference. Our goal is to find the potential
receptors associated to a given ligand. For a more global overview, we induce a network
containing the genes involved in these interactions (Figure 3).
> ## We query and store the interactions into a dataframe

> interactions <- import_LigrecExtra_Interactions(filter_databases=c("HPRD",

+ "Guide2Pharma"),select_organism=9606)

> ## Receptors of the CDH1 ligand.

> interactions_CDH1 <- dplyr::filter(interactions, source_genesymbol == "CDH1")

> ## We transform the interactions data frame into a graph

> OPI_g <- interaction_graph(interactions = interactions_CDH1)

> ## We induce a network with the genes involved in the shortest path and their

> ## first neighbors to get a more general overview of the interactions

> Induced_Network <- dNetInduce(g=OPI_g,

+ nodes_query=as.character(V(OPI_g)$name), knn=0,

+ remove.loops=FALSE, largest.comp=FALSE)

>

> ## We print the induced network

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(Induced_Network, vertex.label.color="black",

+ vertex.frame.color="#ffffff",vertex.size= 20, edge.curved=.2,

+ vertex.color =

8

OmnipathR: utility functions to work with Omnipath in R

+ ifelse(igraph::V(Induced_Network)$name %in% c("CDH1"),

+ "yellow","#00CCFF"), edge.color="blue",edge.width=0.8)

CDH1

EGFR

ITGAE

ITGB7

PTPRF

PTPRM

Figure 3:
Subnetwork extracted from the kinaseextra interactions graph containing the shortest path between B2M
and TFR2 (yellow nodes). The first neighbors of the genes involved in the shortest path are also shown.

Another very interesting interaction dataset also available in Omnipath are the tfregulons
from DoRothEA [2, 3]. It contains transcription factor (TF)-target interactions with confi-
dence score, ranging from A-E, being A the most confident interactions. In the code chunk
shown below, we select and print the most confident interactions for a given TF.
> ## We query and store the interactions into a dataframe

> interactions <- import_TFregulons_Interactions(filter_databases=c("DoRothEA_A",

+ "ARACNe-GTEx"),select_organism=9606)

> ## We select the most confident interactions for a given TF and we print

> ## the interactions to check the way it regulates its different targets

> interactions_A_GLI1 <- dplyr::filter(interactions, tfregulons_level=="A",

+ source_genesymbol == "GLI1")

> print_interactions(interactions_A_GLI1)

source interaction target nsources

1 GLI1 (P08151) ==(+)==> PTCH1 (Q13635) 5

2 GLI1 (P08151) ==(+)==> BCL2 (P10415) 5

3 GLI1 (P08151) ==(-)==> EGR2 (P11161) 3

4 GLI1 (P08151) ==(+)==> IGFBP6 (P24592) 3

5 GLI1 (P08151) ==(+)==> SFRP1 (Q8N474) 3

6 GLI1 (P08151) ==(-)==> SLIT2 (O94813) 3

The last dataset describing interactions is mirnatarget. It stores miRNA-mRNA and TF-
miRNA interactions. These interactions are only available for human so far. We next select
the miRNA interacting with the TF selected in the previous code chunk, GLI1. The main
function of miRNAs seems to be related with gene regulation. It is therefore interesting to see

9

OmnipathR: utility functions to work with Omnipath in R

how some miRNA can regulate the expression of a TF which in turn regulates the expression
of other genes. Figure 4 shows a schematic network of the miRNA targeting GLI1 and the
genes regulated by this TF.
> ## We query and store the interactions into a dataframe

> interactions <-

+ import_miRNAtarget_Interactions(filter_databases=c("miRTarBase","miRecords"))

> ## We select the interactions where a miRNA is interacting with the TF

> ## used in the previous code chunk and we print these interactions.

> interactions_miRNA_GLI1 <-

+ dplyr::filter(interactions, target_genesymbol == "GLI1")

> print_interactions(interactions_miRNA_GLI1)

source interaction target nsources nrefs

2 hsa-miR-324-5p (MIMAT0000761) ==(?)==> GLI1 (P08151) 3 3

1 hsa-miR-125b (MIMAT0000423) ==(?)==> GLI1 (P08151) 2 1

3 hsa-miR-326 (MIMAT0000756) ==(?)==> GLI1 (P08151) 2 1

4 hsa-miR-202 (MIMAT0002811) ==(?)==> GLI1 (P08151) 1 1

5 hsa-miR-133b (MIMAT0000770) ==(?)==> GLI1 (P08151) 1 1

> ## We transform the previous selections to graphs (igraph objects)

> OPI_g_1 <-interaction_graph(interactions = interactions_A_GLI1)

> OPI_g_2 <-interaction_graph(interactions = interactions_miRNA_GLI1)

> ## We print the union of both previous graphs

> par(mar=c(0.1,0.1,0.1,0.1))

> plot(OPI_g_1 %u% OPI_g_2, vertex.label.color="black",

+ vertex.frame.color="#ffffff",vertex.size= 20, edge.curved=.25,

+ vertex.color = ifelse(grepl("miR",igraph::V(OPI_g_1 %u% OPI_g_2)$name),

+ "red",ifelse(igraph::V(OPI_g_1 %u% OPI_g_2)$name == "GLI1",

+ "yellow","#00CCFF")), edge.color="blue",

+ vertex.shape = ifelse(grepl("miR",igraph::V(OPI_g_1 %u% OPI_g_2)$name),

+ "vrectangle","circle"),edge.width=0.8)

3.2 Post-translational modifications (PTMs)

Another query type available is PTMs which provides enzyme-substrate reactions in a very
similar way to the aforementioned interactions. PTMs refer generally to enzymatic modifica-
tion of proteins after their synthesis in the ribosomes. PTMs can be highly context-specific
and they play a main role in the activation/inhibition of biological pathways.
In the next code chunk, we download the PTMs for human. We first check the different
available source databases, even though we do not perform any filter. Then, we select
and print the reactions involving a specific enzyme-substrate pair. Those reactions lack
information about activation or inhibition. To obtain that information, we match the data
with Omnipath interactions. Finally, we show that it is also possible to build a graph using
this information, and to retrieve PTMs from mouse or rat.
> ## We check the different PTMs databases

> get_ptms_databases()

[1] "KEA" "MIMP"

10

OmnipathR: utility functions to work with Omnipath in R

BCL2

EGR2

GLI1

IGFBP6

PTCH1

SFRP1

SLIT2

hsa−miR−125b

hsa−miR−133b

hsa−miR−202

hsa−miR−324−5p

hsa−miR−326

Figure 4:
Schematic network of the miRNA (red square nodes) targeting GLI1 (yellow node) and the genes regulated
by this TF (blue round nodes).

[3] "PhosphoNetworks" "PhosphoSite"

[5] "PhosphoSite_MIMP" "PhosphoSite_ProtMapper"

[7] "ProtMapper" "phosphoELM"

[9] "phosphoELM_MIMP" "BEL-Large-Corpus_ProtMapper"

[11] "HPRD" "HPRD_MIMP"

[13] "RLIMS-P_ProtMapper" "SIGNOR"

[15] "SIGNOR_ProtMapper" "dbPTM"

[17] "Li2012" "NCI-PID_ProtMapper"

[19] "REACH_ProtMapper" "Sparser_ProtMapper"

[21] "Reactome_ProtMapper" "DEPOD"

> ## We query and store the ptms into a dataframe. No filtering by

> ## databases in this case.

> ptms <- import_Omnipath_PTMS()

> ## We can select and print the reactions between a specific kinase and

> ## a specific substrate

> print_interactions(dplyr::filter(ptms,enzyme_genesymbol=="MAP2K1",

+ substrate_genesymbol=="MAPK3"))

enzyme interaction substrate modification nsources

1 MAP2K1 (Q02750) ====> MAPK3_Y204 (P27361) phosphorylation 16

2 MAP2K1 (Q02750) ====> MAPK3_T202 (P27361) phosphorylation 15

3 MAP2K1 (Q02750) ====> MAPK3_Y210 (P27361) phosphorylation 3

4 MAP2K1 (Q02750) ====> MAPK3_T207 (P27361) phosphorylation 3

5 MAP2K1 (Q02750) ====> MAPK3_T80 (P27361) phosphorylation 1

6 MAP2K1 (Q02750) ====> MAPK3_Y222 (P27361) phosphorylation 1

> ## In the previous results, we can see that ptms does not contain sign

> ## (activation/inhibition). We can generate this information based on the

> ## protein-protein Omnipath interaction dataset.

11

OmnipathR: utility functions to work with Omnipath in R

> interactions <- import_Omnipath_Interactions()

> ptms <- get_signed_ptms(ptms,interactions)

> ## We select again the same kinase and substrate. Now we have information

> ## about inhibition or activation when we print the ptms

> print_interactions(dplyr::filter(ptms,enzyme_genesymbol=="MAP2K1",

+ substrate_genesymbol=="MAPK3"))

enzyme interaction substrate modification nsources

5 MAP2K1 (Q02750) ==(+)==> MAPK3_Y204 (P27361) phosphorylation 16

6 MAP2K1 (Q02750) ==(+)==> MAPK3_T202 (P27361) phosphorylation 15

1 MAP2K1 (Q02750) ==(+)==> MAPK3_T207 (P27361) phosphorylation 3

2 MAP2K1 (Q02750) ==(+)==> MAPK3_Y210 (P27361) phosphorylation 3

3 MAP2K1 (Q02750) ==(+)==> MAPK3_T80 (P27361) phosphorylation 1

4 MAP2K1 (Q02750) ==(+)==> MAPK3_Y222 (P27361) phosphorylation 1

> ## We can also transform the ptms into a graph.

> ptms_g <- ptms_graph(ptms = ptms)

> ## We download PTMs for mouse

> ptms <- import_Omnipath_PTMS(filter_databases=c("PhosphoSite", "Signor"),

+ select_organism=10090)

3.3 Complexes

Some studies indicate that around 80% of the human proteins operate in complexes, and
many proteins belong to several different complexes [12]. These complexes play critical roles
in a large variety of biological processes. Some well-known examples are the proteasome and
the ribosome. Thus, the description of the full set of protein complexes functioning in cells
is essential to improve our understanding of biological processes.
The complexes query provides access to more than 20000 protein complexes. This com-
prehensive database has been created by integrating different resources. We now download
these molecular complexes filtering by some of the source databases. We check the com-
plexes where a couple of specific genes participate. First, we look for the complexes where
any of these two genes participate. We then identify the complex where these two genes
are jointly involved. Finally, we perform an enrichment analysis with the genes taking part
in that complex. You should keep an eye on this complex since it will be used again in the
forthcoming sections.
> ## We check the different complexes databases

> get_complexes_databases()

[1] "Compleat" "CORUM" "hu.MAP" "ComplexPortal"

[5] "Signor" "PDB" "CellPhoneDB" "Havugimana2012"

[9] "HPMR" "Guide2Pharma" "CFinder" "NetworkBlast"

> ## We query and store complexes from some sources into a dataframe.

> complexes <- import_Omnipath_complexes(filter_databases=c("CORUM", "hu.MAP"))

> ## We check all the molecular complexes where a set of genes participate

> query_genes <- c("WRN","PARP1")

> ## Complexes where any of the input genes participate

> complexes_query_genes_any <- unique(get_complex_genes(complexes,query_genes,

+ total_match=FALSE))

12

OmnipathR: utility functions to work with Omnipath in R

> ## We print the components of the different selected components

> head(complexes_query_genes_any$components_genesymbols,6)

[1] "NCAPD2_NCAPG_NCAPH_PARP1_SMC2_SMC4_XRCC1"

[2] "CCNA2_CDK2_LIG1_PARP1_POLA1_POLD1_POLE_RFC1_RFC2_RPA1_RPA2_RPA3_TOP1"

[3] "CCNA2_CCNB1_CDK1_PARP1_POLA1_POLD1_POLE_RFC1_RFC2_RPA1_RPA2_RPA3_TOP1"

[4] "MRE11_PARP1_RAD50_TERF2_TERF2IP_XRCC5_XRCC6"

[5] "TERF2_WRN"

[6] "CALR_DHX30_H2AFX_HIST3H2BB_HSPA5_NPM1_PARP1"

> ## Complexes where all the input genes participate jointly

> complexes_query_genes_join <- unique(get_complex_genes(complexes,query_genes,

+ total_match=TRUE))

> ## We print the components of the different selected components

> complexes_query_genes_join$components_genesymbols

[1] "PARP1_WRN_XRCC5_XRCC6"

> genes_complex <-

+ unlist(strsplit(complexes_query_genes_join$components_genesymbols, "_"))

> ## We can perform an enrichment analyses with the genes in the complex

> EnrichmentResults <- gost(genes_complex, significant = TRUE,

+ user_threshold = 0.001, correction_method = c("fdr"),

+ sources=c("GO:BP","GO:CC","GO:MF"))

> ## We show the most significant results

> EnrichmentResults$result %>%

+ dplyr::select(term_id, source, term_name,p_value) %>%

+ dplyr::top_n(5,-p_value)

term_id source term_name p_value

1 GO:0010332 GO:BP response to gamma radiation 5.249561e-08

2 GO:0032392 GO:BP DNA geometric change 3.532059e-07

3 GO:0032508 GO:BP DNA duplex unwinding 3.532059e-07

4 GO:0010212 GO:BP response to ionizing radiation 6.490259e-07

5 GO:0000781 GO:CC chromosome, telomeric region 3.067319e-07

3.4 Annotations

Biological annotations are statements, usually traceable and curated, about the different fea-
tures of a biological entity. At the genetic level, annotations describe the biological function,
the subcellular situation, the DNA location and many other related properties of a particular
gene or its gene products.
The annotations query provides a large variety of data about proteins and complexes. These
data come from dozens of databases and each kind of annotation record contains different
fields. Because of this, here we have a record_id field which is unique within the records of
each database. Each row contains one key value pair and you need to use the record_id to
connect the related key-value pairs (see examples below).

13

OmnipathR: utility functions to work with Omnipath in R

Now, we focus in the annotations of the complex studied in the previous section. We first
inspect the different available databases in the omnipath webserver. Then, we download
the annotations for our complex itself as a biological entity. We find annotations related to
the nucleus and transcriptional control, which is in agreement with the enrichment analysis
results of its individual components.
> ## We check the different annotation databases

> get_annotation_databases()

[1] "Ramilowski_location" "MSigDB" "HGNC"

[4] "GO_Intercell" "HPMR" "LOCATE"

[7] "Zhong2015" "HPA_secretome" "CPAD"

[10] "kinase.com" "Guide2Pharma" "Baccin2019"

[13] "KEGG" "DGIdb" "ComPPI"

[16] "Adhesome" "Integrins" "HPA_subcellular"

[19] "MatrixDB" "DisGeNet" "Surfaceome"

[22] "CSPA" "TopDB" "NetPath"

[25] "IntOGen" "TFcensus" "OPM"

[28] "Matrisome" "Kirouac2010" "CancerSEA"

[31] "Vesiclepedia" "Phosphatome" "Exocarta"

[34] "Ramilowski2015" "CancerGeneCensus" "Membranome"

[37] "HPA_tissue" "LRdb" "HPMR_complex"

[40] "CORUM_Funcat" "CORUM_GO" "SignaLink3"

[43] "SIGNOR"

> ## We can further investigate the features of the complex selected

> ## in the previous section.

>

> ## We first get the annotations of the complex itself:

> annotations <-import_Omnipath_annotations(select_genes=paste0("COMPLEX:",

+ complexes_query_genes_join$components_genesymbols))

> head(dplyr::select(annotations,source,label,value),10)

source label value

1 Ramilowski_location location nucleus

2 MSigDB collection reactome_pathways

3 MSigDB geneset REACTOME_DNA_DOUBLE_STRAND_BREAK_REPAIR

4 MSigDB collection chemical_and_genetic_perturbations

5 MSigDB geneset COLLIS_PRKDC_SUBSTRATES

6 MSigDB collection chemical_and_genetic_perturbations

7 MSigDB geneset PUJANA_CHEK2_PCC_NETWORK

8 MSigDB collection chemical_and_genetic_perturbations

9 MSigDB geneset PUJANA_BRCA1_PCC_NETWORK

10 MSigDB collection reactome_pathways

Afterwards, we explore the annotations of the individual components of the complex in some
databases. We check the pathways where these proteins are involved. Once again, we also
find many nucleus related annotations when checking their cellular location.
> ## Then, we explore some annotations of its individual components

>

> ## Pathways where the proteins belong:

> annotations <- import_Omnipath_annotations(select_genes=genes_complex,

+ filter_databases=c("NetPath"))

14

OmnipathR: utility functions to work with Omnipath in R

> dplyr::select(annotations,genesymbol,value)

genesymbol value

1 PARP1 Androgen receptor (AR)

2 PARP1 TNF-related weak inducer of apoptosis (TWEAK)

3 PARP1 Corticotropin-releasing hormone (CRH)

4 PARP1 Tumor necrosis factor (TNF) alpha

5 PARP1 Oncostatin-M (OSM)

6 XRCC5 Androgen receptor (AR)

7 XRCC6 Androgen receptor (AR)

> ## Cellular localization of our proteins

> annotations <-import_Omnipath_annotations(select_genes=genes_complex,

+ filter_databases=c("ComPPI"))

> ## Since we have same record_id for some results of our query, we spread

> ## these records across columns

> spread(annotations, label,value) %>%

+ dplyr::arrange(desc(score)) %>%

+ dplyr::top_n(10, score)

uniprot genesymbol entity_type source record_id location

1 P12956 XRCC6 protein ComPPI 2975 nucleus

2 P09874 PARP1 protein ComPPI 11259 nucleus

3 Q14191 WRN protein ComPPI 16129 nucleus

4 P13010 XRCC5 protein ComPPI 13400 nucleus

5 P13010 XRCC5 protein ComPPI 13398 membrane

6 P12956 XRCC6 protein ComPPI 2976 cytosol

7 P13010 XRCC5 protein ComPPI 13399 cytosol

8 Q14191 WRN protein ComPPI 16130 cytosol

9 P12956 XRCC6 protein ComPPI 2972 extracellular

10 P12956 XRCC6 protein ComPPI 2974 membrane

11 P13010 XRCC5 protein ComPPI 13397 extracellular

score

1 0.99999997629184

2 0.999999887104

3 0.9999996544

4 0.99999868288

5 0.972

6 0.958

7 0.958

8 0.94

9 0.8600000000000001

10 0.8600000000000001

11 0.8600000000000001

3.5 Intercell

Cells perceive cues from their microenvironment and neighboring cells, and respond accord-
ingly to ensure proper activities and coordination between them. The ensemble of these
communication process is called inter-cellular signaling (intercell).

15

OmnipathR: utility functions to work with Omnipath in R

Intercell query provides information about the roles of proteins in inter-cellular signaling
(e.g. if a protein is a ligand, a receptor, an extracellular matrix (ECM) component, etc.)
This query type is very similar to annotations. However, intercell data does not come from
original sources, but combined from several databases by us into categories (we also refer to
the original sources).
We first inspect the different categories available in the Omnipath webserver. Then, we focus
again in our previously selected complex and we check its potential roles in inter-cellular
signaling. We repeat the analysis with its individual components.
> ## We check some of the different intercell categories

> head(get_intercell_categories(),10)

[1] "receptor_surfaceome" "receptor_go"

[3] "receptor_hpmr" "receptor_ramilowski"

[5] "receptor_kirouac" "receptor_guide2pharma"

[7] "interleukin_receptors_hgnc" "receptor_hgnc"

[9] "receptor_dgidb" "receptor_lrdb"

> ## We import the intercell data into a dataframe

> intercell <- import_Omnipath_intercell()

> ## We check the intercell annotations for our previous complex itself

> dplyr::filter(intercell,

+ genesymbol == complexes_query_genes_join$components_genesymbols,

+ mainclass != "") %>%

+ dplyr::select(category,genesymbol, mainclass)

[1] category genesymbol mainclass

<0 rows> (or 0-length row.names)

> ## We check the intercell annotations for the individual components of

> ## our previous complex. We filter our data to print it in a good format

> dplyr::filter(intercell,genesymbol %in% genes_complex, mainclass!="") %>%

+ dplyr::distinct(genesymbol,mainclass, .keep_all = TRUE) %>%

+ dplyr::select(category, genesymbol, mainclass) %>%

+ dplyr::arrange(genesymbol)

category genesymbol mainclass

1 intracellular_locate PARP1 intracellular

2 extracellular_comppi PARP1 extracellular

3 intracellular_locate WRN intracellular

4 intracellular_locate XRCC5 intracellular

5 extracellular_matrixdb XRCC5 extracellular

6 extracellular_enzyme_go XRCC5 extracellular_enzyme

7 cell_surface_cspa XRCC6 cell_surface

8 intracellular_locate XRCC6 intracellular

9 extracellular_matrixdb XRCC6 extracellular

10 surface_enzyme_go XRCC6 surface_enzyme

11 extracellular_enzyme_go XRCC6 extracellular_enzyme

> ## We close graphical connections

> while (!is.null(dev.list())) dev.off()

16

OmnipathR: utility functions to work with Omnipath in R

3.6 Conclusion

OmnipathR provides access to the wealth of data stored in the Omnipath webservice http:
//omnipathdb.org/ from the R enviroment. In addition, it contains some utility functions for
visualization, filtering and analysis. The main strength of OmnipathR is the straightforward
transformation of the different Omnipath data into commonly used R objects, such as
dataframes and graphs. Consequently, it allows an easy integration of the different types
of data and a gateway to the vast number of R packages dedicated to the analysis and
representaiton of biological data. We highlighted these abilities in some of the examples
detailed in previous sections of this document.

17

http://bioconductor.org/packages/OmnipathR
http://omnipathdb.org/
http://omnipathdb.org/
http://bioconductor.org/packages/OmnipathR

OmnipathR: utility functions to work with Omnipath in R

References

[1] Dénes Türei, Tamás Korcsmáros, and Julio Saez-Rodriguez. OmniPath: guidelines and
gateway for literature-curated signaling pathway resources. Nature Methods,
13(12):966–967, November 2016. URL: https://doi.org/10.1038/nmeth.4077,
doi:10.1038/nmeth.4077.

[2] Luz Garcia-Alonso, Francesco Iorio, Angela Matchan, Nuno Fonseca, Patricia Jaaks,
Gareth Peat, Miguel Pignatelli, Fiammetta Falcone, Cyril H. Benes, Ian Dunham,
Graham Bignell, Simon S. McDade, Mathew J. Garnett, and Julio Saez-Rodriguez.
Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer
Research, 78(3):769–780, December 2017. URL:
https://doi.org/10.1158/0008-5472.can-17-1679,
doi:10.1158/0008-5472.can-17-1679.

[3] Luz Garcia-Alonso, Christian H. Holland, Mahmoud M. Ibrahim, Denes Turei, and
Julio Saez-Rodriguez. Benchmark and integration of resources for the estimation of
human transcription factor activities. Genome Research, 29(8):1363–1375, July 2019.
URL: https://doi.org/10.1101/gr.240663.118, doi:10.1101/gr.240663.118.

[4] H. Dinkel, C. Chica, A. Via, C. M. Gould, L. J. Jensen, T. J. Gibson, and F. Diella.
Phospho.ELM: a database of phosphorylation sites–update 2011. Nucleic Acids
Research, 39(Database):D261–D267, November 2010. URL:
https://doi.org/10.1093/nar/gkq1104, doi:10.1093/nar/gkq1104.

[5] Peter V. Hornbeck, Bin Zhang, Beth Murray, Jon M. Kornhauser, Vaughan Latham,
and Elzbieta Skrzypek. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
Nucleic Acids Research, 43(D1):D512–D520, December 2014. URL:
https://doi.org/10.1093/nar/gku1267, doi:10.1093/nar/gku1267.

[6] Madalina Giurgiu, Julian Reinhard, Barbara Brauner, Irmtraud Dunger-Kaltenbach,
Gisela Fobo, Goar Frishman, Corinna Montrone, and Andreas Ruepp. CORUM: the
comprehensive resource of mammalian protein complexes—2019. Nucleic Acids
Research, 47(D1):D559–D563, October 2018. URL:
https://doi.org/10.1093/nar/gky973, doi:10.1093/nar/gky973.

[7] Kevin Drew, Chanjae Lee, Ryan L Huizar, Fan Tu, Blake Borgeson, Claire D McWhite,
Yun Ma, John B Wallingford, and Edward M Marcotte. Integration of over 9, 000
mass spectrometry experiments builds a global map of human protein complexes.
Molecular Systems Biology, 13(6):932, June 2017. URL:
https://doi.org/10.15252/msb.20167490, doi:10.15252/msb.20167490.

[8] László Dobson, Tamás Langó, István Reményi, and Gábor E. Tusnády. Expediting
topology data gathering for the TOPDB database. Nucleic Acids Research,
43(D1):D283–D289, November 2014. URL: https://doi.org/10.1093/nar/gku1119,
doi:10.1093/nar/gku1119.

[9] Shivakumar Keerthikumar, David Chisanga, Dinuka Ariyaratne, Haidar Al Saffar,
Sushma Anand, Kening Zhao, Monisha Samuel, Mohashin Pathan, Markandeya Jois,
Naveen Chilamkurti, Lahiru Gangoda, and Suresh Mathivanan. ExoCarta: A
web-based compendium of exosomal cargo. Journal of Molecular Biology,
428(4):688–692, February 2016. URL: https://doi.org/10.1016/j.jmb.2015.09.019,
doi:10.1016/j.jmb.2015.09.019.

18

https://doi.org/10.1038/nmeth.4077
http://dx.doi.org/10.1038/nmeth.4077
https://doi.org/10.1158/0008-5472.can-17-1679
http://dx.doi.org/10.1158/0008-5472.can-17-1679
https://doi.org/10.1101/gr.240663.118
http://dx.doi.org/10.1101/gr.240663.118
https://doi.org/10.1093/nar/gkq1104
http://dx.doi.org/10.1093/nar/gkq1104
https://doi.org/10.1093/nar/gku1267
http://dx.doi.org/10.1093/nar/gku1267
https://doi.org/10.1093/nar/gky973
http://dx.doi.org/10.1093/nar/gky973
https://doi.org/10.15252/msb.20167490
http://dx.doi.org/10.15252/msb.20167490
https://doi.org/10.1093/nar/gku1119
http://dx.doi.org/10.1093/nar/gku1119
https://doi.org/10.1016/j.jmb.2015.09.019
http://dx.doi.org/10.1016/j.jmb.2015.09.019

OmnipathR: utility functions to work with Omnipath in R

[10] Roser Vento-Tormo, Mirjana Efremova, Rachel A. Botting, Margherita Y. Turco,
Miquel Vento-Tormo, Kerstin B. Meyer, Jong-Eun Park, Emily Stephenson, Krzysztof
Polański, Angela Goncalves, Lucy Gardner, Staffan Holmqvist, Johan Henriksson,
Angela Zou, Andrew M. Sharkey, Ben Millar, Barbara Innes, Laura Wood, Anna
Wilbrey-Clark, Rebecca P. Payne, Martin A. Ivarsson, Steve Lisgo, Andrew Filby,
David H. Rowitch, Judith N. Bulmer, Gavin J. Wright, Michael J. T. Stubbington,
Muzlifah Haniffa, Ashley Moffett, and Sarah A. Teichmann. Single-cell reconstruction
of the early maternal–fetal interface in humans. Nature, 563(7731):347–353,
November 2018. URL: https://doi.org/10.1038/s41586-018-0698-6,
doi:10.1038/s41586-018-0698-6.

[11] I. Ben-Shlomo, S. Yu Hsu, R. Rauch, H. W. Kowalski, and A. J. W. Hsueh. Signaling
receptome: A genomic and evolutionary perspective of plasma membrane receptors
involved in signal transduction. Science Signaling, 2003(187):re9–re9, June 2003.
URL: https://doi.org/10.1126/stke.2003.187.re9, doi:10.1126/stke.2003.187.re9.

[12] Tord Berggård, Sara Linse, and Peter James. Methods for the detection and analysis
of protein–protein interactions. PROTEOMICS, 7(16):2833–2842, August 2007. URL:
https://doi.org/10.1002/pmic.200700131, doi:10.1002/pmic.200700131.

19

https://doi.org/10.1038/s41586-018-0698-6
http://dx.doi.org/10.1038/s41586-018-0698-6
https://doi.org/10.1126/stke.2003.187.re9
http://dx.doi.org/10.1126/stke.2003.187.re9
https://doi.org/10.1002/pmic.200700131
http://dx.doi.org/10.1002/pmic.200700131

OmnipathR: utility functions to work with Omnipath in R

A Session info

• R version 3.6.3 (2020-02-29), x86_64-pc-linux-gnu
• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,

LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 18.04.4 LTS

• Matrix products: default
• BLAS: /home/biocbuild/bbs-3.10-bioc/R/lib/libRblas.so
• LAPACK: /home/biocbuild/bbs-3.10-bioc/R/lib/libRlapack.so
• Base packages: base, datasets, grDevices, graphics, methods, stats, utils
• Other packages: OmnipathR 1.0.1, dnet 1.1.7, gprofiler2 0.1.8, hexbin 1.28.1,

igraph 1.2.5, supraHex 1.24.0, tidyr 1.0.2
• Loaded via a namespace (and not attached): BiocGenerics 0.32.0,

BiocManager 1.30.10, BiocStyle 2.14.4, MASS 7.3-51.5, Matrix 1.2-18, R6 2.4.1,
RCurl 1.98-1.1, Rcpp 1.0.4, Rgraphviz 2.30.0, ape 5.3, assertthat 0.2.1, bitops 1.0-6,
colorspace 1.4-1, compiler 3.6.3, crayon 1.3.4, data.table 1.12.8, digest 0.6.25,
dplyr 0.8.5, evaluate 0.14, ggplot2 3.3.0, glue 1.3.2, graph 1.64.0, grid 3.6.3,
gtable 0.3.0, htmltools 0.4.0, htmlwidgets 1.5.1, httr 1.4.1, jsonlite 1.6.1, knitr 1.28,
lattice 0.20-40, lazyeval 0.2.2, lifecycle 0.2.0, magrittr 1.5, munsell 0.5.0,
nlme 3.1-145, parallel 3.6.3, pillar 1.4.3, pkgconfig 2.0.3, plotly 4.9.2, purrr 0.3.3,
rlang 0.4.5, rmarkdown 2.1, scales 1.1.0, stats4 3.6.3, tibble 2.1.3, tidyselect 1.0.0,
tools 3.6.3, vctrs 0.2.4, viridisLite 0.3.0, xfun 0.12, yaml 2.2.1

20

	1 Introduction
	1.1 Query types
	1.2 Mouse and rat

	2 Installation of the OmnipathR package
	3 Usage Examples
	3.1 Interactions
	3.1.1 Protein-protein interaction networks
	3.1.2 Other interaction datasets

	3.2 Post-translational modifications (PTMs)
	3.3 Complexes
	3.4 Annotations
	3.5 Intercell
	3.6 Conclusion

	A Session info

