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1 Why the ALDEx2 package?

Fundamentally, many high throughput sequencing approaches generate similar data: reads are
mapped to features in each sample, these features are normalized, then statistical difference
between the features composing each group or condition is calculated1. The standard statistical
tools used to analyze RNA-seq, ChIP-seq, 16S rRNA gene sequencing, metagenomics, etc.
are fundamentally different for each approach despite the underlying similarity in the data
structures. In most cases the values expected by, and modelled by, these tools is counts2.
ALDEx2 breaks with this approach. Fundamentally, ALDEx2 models the data as the probability
of observing the count. In general, the observed data are single technical replicates, and
the single observed count of a feature is one example from a distribution of examples that
could have been observed under a repeated sampling model. The total read depth for a
sample contains only information on the precision, and nothing else. ALDEx2 provides a
consistent framework that encompasses essentially all high throughput sequencing data types
by modelling the data as a log-ratio transformed probability distribution rather than as counts3.

2 Introduction to ALDEx2

This guide provides an overview of the R package ALDEx version 2 (ALDEx2) for differential
(relative) abundance analysis of proportional data4. The package was developed and used ini-
tially for multiple-organism RNA-Seq data generated by high-throughput sequencing platforms
(meta-RNA-Seq)5, but testing showed that it performed very well with traditional RNA-Seq
datasets6, 16S rRNA gene variable region sequencing7 and selective growth-type (SELEX)
experiments8. In principle, the analysis method should be applicable to nearly any type of
data that is generated by high-throughput sequencing that generates tables of per-feature
counts for each sample(Fernandes et al. 2014): in addition to the examples outlined above,
this would include ChIP-Seq or metagenome sequencing. We will be including examples and
citations for application on these types of problems as we move forward.
The ALDEx2 package in Bioconductor is modular and is suitable for the comparison of many
different experimental designs. This is achieved by exposing the underlying centre log-ratio
transformed Dirichlet Monte-Carlo replicate values to make it possible for anyone to add the
specific R code for their experimental design — a guide to these values is outlined below.
ALDEx2 estimates per-feature technical variation within each sample using Monte-Carlo
instances drawn from the Dirichlet distribution. This distribution maintains the proportional
nature of the data and returns a multivariate probability distribution. ALDEx2 uses the centred
log-ratio (clr) transformation that ensures the data are scale invariant and sub-compositionally
coherent9. The scale invariance property removes the need for a between sample data
normalization step since the data are all placed on a consistent numerical co-ordinate. The
sub-compositional coherence property ensures that the answers obtained are consistent when
parts of the dataset are removed (e.g., removal of rRNA reads from RNA-seq studies or
rare OTU species from 16S rRNA gene amplicon studies). All feature abundance values
are expressed relative to the geometric mean abundance of all features in a sample. This
is conceptually similar to a quantitative PCR where abundances are expressed relative to a
standard: in the case of the clr transformation, the standard is the per-sample geometric
mean abundance. See Aitchison (1986) for a complete description.
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3 Installation

There are multiple ways to download and install the most current of ALDEx2. ALDEx2
will run with only the base R packages and is capable of running several functions with the
‘parallel’ package if installed. It has been tested with version R version 3, but should run on
version 2.12 onward. It is recommended that the package be run on the most up-to-date R
and Bioconductor versions. ALDEx2 will make use of the BiocParallel package if possible,
otherwise, ALDEx2 will run in serial mode.

4 Quick Start: aldex with 2 groups:

ALDEx2 contains an aldex wrapper function that can perform many simple analyses. This
wrapper will link the modular elements together to emulate ALDEx2 prior to the modular
approach. Note that if the test is ‘kw’, then effect should be FALSE. If the test is ‘t’, then
effect should be set to TRUE. The ‘t’ option evaluates the data as a two-factor experiment
using both the Welch’s t and the Wilcoxon rank tests. The ‘kw’ option evaluates the data as
a one-way ANOVA using the glm and Kruskal-Wallace tests. All tests include a Benjamini-
Hochberg correction of the raw P values. The data can be plotted onto Bland-Altmann10
(MA) or effect (MW) plots11 for for two-way tests using the aldex.plot function. See the
end of the modular section for examples of the plots.
Case study a growth selection type (SELEX) experiment12. This section contains an analysis
of a dataset collected where a single gene library was made that contained 1600 sequence
variants at 4 codons in the sequence. These variants were cloned into an expression vector at
equimolar amounts. The wild-type version of the gene conferred resistance to a topoisomerase
toxin. Seven independent growths of the gene library were conducted under selective and non-
selective conditions and the resulting abundances of each variant was read out by sequencing
a pooled, barcoded library on an Illumina MiSeq. The data table is included as selex_table.txt
in the package. In this data table, there are 1600 features and 14 samples. The analysis takes
approximately 2 minutes and memory usage tops out at less than 1Gb of RAM on a mobile i7
class processor when we use 128 Dirichlet Monte-Carlo Instances (DMC). For speed concerns
we use only the first 400 features and perform only 16 DMC. The command used for ALDEx2
is presented below:
First we load the library and the included selex dataset. Then we set the comparison groups.
This must be a vector of conditions in the same order as the samples in the input counts
table. The aldex command is calling several other functions in the background, and each of
them returns diagnostics.
library(ALDEx2)

data(selex)

#subset only the last 400 features for efficiency

selex.sub <- selex[1:400,]

conds <- c(rep("NS", 7), rep("S", 7))

x.all <- aldex(selex.sub, conds, mc.samples=16, test="t", effect=TRUE,

include.sample.summary=FALSE, denom="all", verbose=FALSE)

par(mfrow=c(1,2))

aldex.plot(x.all, type="MA", test="welch", xlab="Log-ratio abundance",
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ylab="Difference")

aldex.plot(x.all, type="MW", test="welch", xlab="Dispersion",

ylab="Difference")
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Figure 1: MA and Effect plots of ALDEx2 output
The left panel is an Bland-Altman or MA plot that shows the relationship between abundance and Differ-
ence. The right panel is an effect plot that shows the relationship between Difference and Dispersion. In
both plots features that are not significant are in grey or black. Features that are statistically significant are
in red. The Log-ratio abundance axis is the clr value for the feature.

5 Using ALDEx2 modules

The modular approach exposes the underlying intermediate data so that users can generate
their own tests. The simple approach outlined above just calls aldex.clr, aldex.ttest,

aldex.effect in turn and then merges the data into one object. We will show these modules
in turn, and then examine additional modules.

5.1 The aldex.clr module

The workflow for the modular approach first generates random instances of the centred
log-ratio transformed values. There are three inputs: counts table, a vector of conditions, the
number of Monte-Carlo instances, a string indicating if iqlr, zero or all feature are used as the
denominator is required, and level of verbosity (TRUE or FALSE). We recommend 128 or
more mc.samples for the t-test, 1000 for a rigorous effect size calculation, and at least 16 for
ANOVA.
This operation is fast.
x <- aldex.clr(selex.sub, conds, mc.samples=16, denom="all", verbose=F)

5
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5.2 The aldex.ttest module

The next operation performs the Welch’s t and Wilcoxon rank test for the instance when
there are only two conditions. There are three inputs: the aldex object from aldex.clr, the
vector of conditions, whether a paired test should be conducted or not (TRUE or FALSE).
This operation is reasonably fast.
x.tt <- aldex.ttest(x, paired.test=FALSE, verbose=FALSE)

5.3 The aldex.kw module

Alternatively to the t-test, the user can perform the glm and Kruskal Wallace tests for one-way
ANOVA of two or more conditions. Here there are only two inputs: the aldex object from
aldex.clr, and the vector of conditions. Note that this is slow! and is not evaluated for this
documentation.
x.kw <- aldex.kw(x)

5.4 The aldex.effect module

Finally, we estimate effect size and the within and between condition values in the case of
two conditions. This step is required for plotting. There are four inputs: the aldex object
from aldex.clr, the vector of conditions, a flag as to whether to include values for all samples
or not are used as the denominator, and the level of verbosity.
x.effect <- aldex.effect(x, verbose=FALSE)

5.5 The aldex.plot module

Finally, the t-test and effect data are merged into one object.
x.all <- data.frame(x.tt,x.effect)

And the data are plotted. We see that the plotted data in Figure 1 and 2 are essentially the
same.

par(mfrow=c(1,2))

aldex.plot(x.all, type="MA", test="welch")

aldex.plot(x.all, type="MW", test="welch")

5.6 Complex study designs and the aldex.glm module

The aldex.glm module has been included so that the probabilistic compositional approach can
be used for complex study designs. This module is substantially slower than the two-comparison
tests above, but we think it is worth it if you have complex study designs.
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Figure 2: Output from aldex.plot function
The left panel is the MA plot, the right is the MW (effect) plot. In both plots red represents features called
as differentially abundant with q < 0.1; grey are abundant, but not non-differentially abundant; black are
rare, but not differentially abundant. This function uses the combined output from the aldex.ttest and
aldex.effect functions

Essentially, the approach is the modular approach above but using a model matrix and
covariates supplied to the glm function in R. The values returned are the expected values of
the glm function given the inputs. In the example below, we are measuring the predictive value
of variables A and B independently. See the documentation for the R formula function, or http:
//faculty.chicagobooth.edu/richard.hahn/teaching/formulanotation.pdf for more information.
Validation of features that are differential under any of the variables identified by the aldex.glm
function should be performed using the aldex.effect function as a post-hoc test.
covariates <- data.frame("A" = sample(0:1, 14, replace = TRUE),

"B" = c(rep(0, 7), rep(1, 7)))

mm <- model.matrix(~ A + B, covariates)

x <- aldex.clr(selex.sub, mm, mc.samples=8, denom="all")

## operating in serial mode

## Warning in aldex.clr.function(reads, conds, mc.samples, denom, verbose, :

## values are unreliable when estimated with so few MC smps

## computing center with all features

glm.test <- aldex.glm(x, mm)

## Warning in if (verbose) message("running tests for each MC instance:"): the

## condition has length > 1 and only the first element will be used

## running tests for each MC instance:

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## |------

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## -----

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## -(25%)----

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

7

http://faculty.chicagobooth.edu/richard.hahn/teaching/formulanotation.pdf
http://faculty.chicagobooth.edu/richard.hahn/teaching/formulanotation.pdf


ALDEx2

## has length > 1 and only the first element will be used

## -----

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## -(50%)----

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## -----

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## -(75%)----

## Warning in if (verbose) numTicks <- progress(i, k, numTicks): the condition

## has length > 1 and only the first element will be used

## ------|

par(mfrow=c(1,2))

plot(glm.test[,"model.A Pr(>|t|).BH"], x.all$we.eBH, log="xy",

xlab="glm model A", ylab="Welch's t-test")

plot(glm.test[,"model.B Pr(>|t|).BH"], x.all$we.eBH, log="xy",

xlab="glm model A", ylab="Welch's t-test")
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Figure 3: Comparing the glm and t-test
Plots of the expected P values for variables output from the glm function with model A (random predic-
tors), and model B (actual study design groups) compared to the P values output by the Welch’s t-test.
This toy model shows how to use a generalized linear model within theALDEx2 framework. All values are
the expected value of the test statistic after correction for multiple hypothesis testing.
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6 ALDEx2 outputs

6.1 Expected values

ALDEx2 returns expected values for summary statistics. It is important to note that ALDEx
uses Bayesian sampling from a Dirichlet distribution to estimate the underlying technical
variation. This is controlled by the number of mc.samples, in practice we find that setting
this to 16 or 128 is sufficient for most cases as ALDEx2 is estimating the expected value of
the distributions13.
In practical terms, ALDEx2 takes the biological observations as given, but infers technical
variation (sequencing the same sample again) multiple times using the aldex.clr function.
Thus, the expected values returned are those that would likely have been observed if the same
samples had been run multiple times. The user is cautioned that the number of features called
as differential will vary somewhat between runs because of this sampling procedure. However,
only features with values close to the chosen significance cutoff will vary between runs.
Several papers have suggested that ALDEx2 is unable to properly control for the false discovery
rate since the P values returned do not follow a random uniform distribution, but rather
tend to cluster near a value of 0.514Thorsen et al. (2016). These studies indicate that point
estimate approaches are very sensitive to particular experimental designs and differences in
sparsity and read depth. However, ALDEx2 is not sensitive to these characteristics of the data,
but seem to under-report the true FDR. The criticisms miss the mark on ALDEx2 because
ALDEx2 reports the expected P value across the Dirichlet Monte-Carlo replicates. Features
that are differential simply because of the vagaries of random sampling will indeed have a
random uniform P value as point estimates, but will have an expected P value after repeated
random sampling of 0.5. In contrast, features that are differential because of true biological
variation are robust to repeated random sampling. Thus, ALDEx2 identifies as differential
only those features where simple random sampling (the minimal NULL hypothesis) cannot
explain the difference.
In our experience, we observe that ALDEx2 returns a set of features that is very similar to
the set returned as the intersect of multiple independent tools—a common recommendation
when examining HTS datasets15

6.2 Explaining the outputs

variant we.ep we.eBH wi.ep wi.eBH kw.ep
A:D:A:D 4.03010e-01 0.63080705 0.239383012 0.43732819 0.21532060
A:D:A:E 1.15463e-01 0.34744596 0.040901806 0.15725841 0.03745315
A:E:A:D 8.98797e-05 0.00329076 0.000582750 0.00820759 0.00174511

variant kw.eBH glm.ep glm.eBH rab.all rab.win.NS rab.win.S
A:D:A:D 0.3932743 3.61061e-01 5.23582e-01 1.42494 1.30886 2.45384
A:D:A:E 0.1486590 8.12265e-02 1.92292e-01 1.71230 1.49767 4.23315
A:E:A:D 0.0245786 7.73660e-08 3.35492e-06 3.97484 1.41163 11.02154
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variant diff.btw diff.win effect overlap
A:D:A:D 1.12261 1.72910 0.471043 0.267260701
A:D:A:E 2.73090 2.38134 1.034873 0.135857781
A:E:A:D 9.64287 2.85008 3.429068 0.000156632

In the list below, the aldex.ttest function returns the values highlighted with ∗, the aldex.kw
function returns the values highlighted with ◦, and the aldex.effect function returns the
values highlighted with ♦.

1. ∗ we.ep - Expected P value of Welch’s t test
2. ∗ we.eBH - Expected Benjamini-Hochberg corrected P value of Welch’s t test
3. ∗ wi.ep - Expected P value of Wilcoxon rank test
4. ∗ wi.eBH - Expected Benjamini-Hochberg corrected P value of Wilcoxon test
5. ◦ kw.ep - Expected P value of Kruskal-Wallace test
6. ◦ kw.eBH - Expected Benjamini-Hochberg corrected P value of Kruskal-Wallace test
7. ◦ glm.ep - Expected P value of glm test
8. ◦ glm.eBH - Expected Benjamini-Hochberg corrected P value of glm test
9. ♦ rab.all - median clr value for all samples in the feature
10. ♦ rab.win.NS - median clr value for the NS group of samples
11. ♦ rab.win.S - median clr value for the S group of samples
12. ♦ rab.X1_BNS.q50 - median expression value of features in sample X1_BNS if in

clude.item.summary=TRUE

13. ♦ dif.btw - median difference in clr values between S and NS groups
14. ♦ dif.win - median of the largest difference in clr values within S and NS groups
15. ♦ effect - median effect size: diff.btw / max(diff.win) for all instances
16. ♦ overlap - proportion of effect size that overlaps 0 (i.e. no effect)

6.3 A word about effect size and overlap

The effect size metric used by ALDEx2 is a standardized distributional effect size metric
developed specifically for this package. The measure is somewhat robust, allowing up to
20% of the samples to be outliers before the value is affected, returns an effect size that is
71% the size of Cohen’s d on a Normal distribution, and requires at worst twice the number
of samples as a fully parametric method (which are not robust) would to estimate values
with the same precision. The metric is equally valid for Normal, random uniform and Cauchy
distributionsˆ((???) submitted).
We prefer to use the effect size whenever possible rather than statistical significance since an
effect size tells the scientist what they want to know—“what is reproducibly different between
groups”; this is emphatically not something that P values deliver. We find that using the
effect size returns a consistent set of true positive features irregardless of sample size, unlike
P value based methods. Furthermore, over half of the the false positive features that are
observed at low sample sizes have and effect size > 0.5× E the chosen effect size cutoff E.
This is true regardless of the source of the dataset ((???) submitted).
We suggest that an effect size cutoff of 1 or greater be used when analyzing HTS datasets. If
preferred the user can also set a fold-change cutoff as is commonly done with P value based
methods.
The plot below shows the relationship between effect size and P values and BH-adjusted P
values in the test dataset.
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par(mfrow=c(1,2))

plot(x.all$effect, x.all$we.ep, log="y", cex=0.7, col=rgb(0,0,1,0.2),

pch=19, xlab="Effect size", ylab="P value", main="Effect size plot")

points(x.all$effect, x.all$we.eBH, cex=0.7, col=rgb(1,0,0,0.2),

pch=19)

abline(h=0.05, lty=2, col="grey")

legend(15,1, legend=c("P value", "BH-adjusted"), pch=19, col=c("blue", "red"))

plot(x.all$diff.btw, x.all$we.ep, log="y", cex=0.7, col=rgb(0,0,1,0.2),

pch=19, xlab="Difference", ylab="P value", main="Volcano plot")

points(x.all$diff.btw, x.all$we.eBH, cex=0.7, col=rgb(1,0,0,0.2),

pch=19)

abline(h=0.05, lty=2, col="grey")
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Figure 4: Relationship between effect, difference, and P values
We can see that the effect size has a much tighter relationship to the P value than does the raw difference.
The effect size is relatively stable across datasets, but the P value become progressively smaller as the
sample size is increased.

6.3.1 Alternative plotting of outputs

The built-in aldex.plot function described above will usually be sufficient, but for more user
control the example in Figure 4 shows a plot that shows which features are found by the
Welchs’ or Wilcoxon test individually (blue) or by both (red).

# identify which values are significant in both the t-test and glm tests

found.by.all <- which(x.all$we.eBH < 0.05 & x.all$wi.eBH < 0.05)

# identify which values are significant in fewer than all tests

found.by.one <- which(x.all$we.eBH < 0.05 | x.all$wi.eBH < 0.05)

# plot the within and between variation of the data
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plot(x.all$diff.win, x.all$diff.btw, pch=19, cex=0.3, col=rgb(0,0,0,0.3),

xlab="Dispersion", ylab="Difference")

points(x.all$diff.win[found.by.one], x.all$diff.btw[found.by.one], pch=19,

cex=0.7, col=rgb(0,0,1,0.5))

points(x.all$diff.win[found.by.all], x.all$diff.btw[found.by.all], pch=19,

cex=0.7, col=rgb(1,0,0,1))

abline(0,1,lty=2)

abline(0,-1,lty=2)
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Figure 5: Differential abundance in the selex dataset using the Welch’s t-test or Wilcoxon rank test
Features identified by both tests shown in red. Features identified by only one test are shown in blue dots.
Non-significant features represent rare features if black and abundant features if grey dots.
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16Wu et al (in prep)

17Aitchison:1986

7 Correcting for asymmetric datasets

In some cases we observe that the data returned by the centre log-ratio can be asymmetric. This
occurs when the data are extremely asymmetric, such as when one group is largely composed of
features that are absent in the other group. In this case the geometric mean will not accurately
represent the appropriate basis of comparison for each group. An asymmetry can arise for
many reasons: in RNA-seq it could arise because samples in one group contain a plasmid and
the samples in the other group do not; in metagenomics or 16S rRNA gene sequencing it can
arise when the samples in the two groups are taken from different environments; in a selex
experiment it can arise because the two groups are under different selective constraints. The
asymmetry can manifest either as a difference in sparsity (i.e., one group contains more 0
value features than the other) or as a systematic difference in abundance. When this occurs
the geometric mean of each sample and group can be markedly different, and thus an inherent
skew in the dataset can occur that leads to false positive and false negative feature calls.
Asymmetry generally shows as a the centre of mass of the histogram for the x.all$diff.btw or
x.all$effect being not centred around zero16. We recommend that all datasets be examined
for asymmetry.
The approach taken by ALDEx2 is to identify those features that are relatively invariant in
all features in the entire dataset even though many features could be asymmetric between
the groups. Fundamentally, the log-ratio approach requires that the denominator across all
samples be comparable. The output of aldex.clr contains the offset of the features used for
the denominator in the @denom slot.

7.1 Methods to correct for asymmetry

The aldex.clr function incorporates multiple approaches to deal with asymmetric datasets:
IMPORTANT: all rows must contain one or more counts when the user defines the row indices
to ensure the appropriate rows are chosen

1. all : The default is to calculate the geometric mean of all features using the centred
log-ratio of Aitchison17. This is the usual method for the compositional data analysis
approach.

2. _iqlr: The iqlr method identifies those features that exhibit reproducible variance in
the entire dataset. This is called the inter-quartile log-ratio or iqlr approach. For this,
a uniform prior of 0.5 is applied to the dataset, the clr transformation is applied, and
the variance of each feature is calculated. Those features that have variance values
that fall between the first and third quartiles of variance for all features in all groups
in the dataset are retained. When aldex.clr is called, the geometric mean abundance
of only the retained features is calculated and used as the denominator for log-ratio
calculations. Modelling shows that this approach is effective in dealing with datasets
with up to 25% of the features being asymmetric. The approach has the advantage
it has little or no effect on symmetric datasets and so is a safe approach if the user is
unsure if the data is mildly asymmetric.

3. lvha: This method identifies those features that in the bottom quartile for variance in
each group and the top quartile for relative abundance for each sample and across the
entire dataset. This method is appropriate when the groups are very asymmetric, but
there are some features that are expected to be relatively constant. The basic idea here
is to identify those features that are relatively constant across all samples, similar to
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the features that would be chosen as internal standards in qPCR. Experience suggests
that meta-genomic and meta-transcriptomic datasets can benefit from this method of
choosing the denominator. This method does not work with the selex dataset, since no
features fit the criteria.

4. zero: This approach identifies and uses only those features that are non-zero in each
group. In this approach the per-group non-zero features are used when aldex.clr

calculates the geometric mean in the clr transformation. This method is appropriate
when the groups are very asymmetric, but the experimentalist must ask whether the
comparison is valid in these extreme cases.

5. user : The last new approach is to let the user define the set of ‘invariant’ features.
In the case of meta-rna-seq, it could be argued that the levels of housekeeping genes
should be standard for all samples. In this case the user could define the row indices
that correspond to the particular set of housekeeping genes to use as the standard. It is
important that no row contain all 0 values for any feature when this method is used.

6. iterate: This method identifies those features that are not statistically significantly
different between groups using the statistical test of choice.

Figure 5 shows the effect of the iqlr correction on the example dataset. When the denominator
is all, we see that the bulk of the points fall off the midpoint (dotted line), but that the
bulk of the points are centered around 0 for the iqlr and lvha analysis. Thus, we have a
demonstrably better centring of the data in the latter two methods. Practically speaking,
we alter the p values and effect sizes of features near the margin of significance following
iqlr or lvha transformation. The effect is largest for those features that are close to the bulk
datapoints.
First the code:
# small synthetic dataset for illustration

# denominator features in x@denominator

data(synth2)

blocks <- c(rep("N", 10),rep("S", 10))

x <- aldex.clr(synth2, blocks, denom="all")

x.e <- aldex.effect(x)

plot(x.e$diff.win, x.e$diff.btw, pch=19, col=rgb(0,0,0,0.1), cex=0.5, xlab="dispersion", ylab="difference", main="all")

points(x.e$diff.win[x@denom], x.e$diff.btw[x@denom], pch=19, col=rgb(0.8,0.5,0,0.7), cex=0.5)

points(x.e$diff.win[47:86], x.e$diff.btw[47:86], col=rgb(0.8,0,0,0.7), cex=0.5)

points(x.e$diff.win[980:1000], x.e$diff.btw[980:1000], col=rgb(0.8,0,0,0.7), cex=0.5)

abline(0,1)

abline(0,-1)

abline(h=0, col="gray", lty=2)

## operating in serial mode

## computing center with all features

## operating in serial mode

## sanity check complete

## rab.all complete

## rab of samples complete

## within sample difference calculated

## between group difference calculated

## group summaries calculated
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## effect size calculated

## summarizing output

## operating in serial mode

## computing iqlr centering

## operating in serial mode

## sanity check complete

## rab.all complete

## rab of samples complete

## within sample difference calculated

## between group difference calculated

## group summaries calculated

## effect size calculated

## summarizing output

## operating in serial mode

## computing center with housekeeping features

## operating in serial mode

## sanity check complete

## rab.all complete

## rab of samples complete

## within sample difference calculated

## between group difference calculated

## group summaries calculated

## effect size calculated

## summarizing output

\begin{figure}
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\caption{Differential abundance in a synthetic dataset using different denominators for the clr
calculation. In this data 2% of the features are modelled to be sparse in one group but not
the other. Features modelled to be different between two groups are shown in red. Features
that are non-significant are in grey (or brown). Features used in the denominator shown in
brown: the geometric mean of these features is used as the denominator when calculating
the clr transformation. Lines of constant effect are drawn at 0, and ± 1. Note that the iqlr
and lvha denominators place the middle of the non-asymmetric features at a between group
difference of 0.} \end{figure}
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18Quinn et al. (2017)

19Macklaim et al.
(2013);Fernandes et
al. (2013)

20Fernandes et al.
(2014)

8 Contributors

I am grateful that ALDEx2 has taken on a life of its own.
• Andrew Fernandes wrote the original ALDEx code, and designed ALDEx2.
• Jean Macklaim found and squished many bugs, performed unit testing, did much of the

original validation. Jean also made seminal contributions to simplifying and explaining
the output of ALDEx2.

• Matt Links incorporated several ALDEx2 functions into a multicore environment.
• Adrianne Albert wrote the correlation and the one-way ANOVA modules in aldex.kw.
• Ruth Grace Wong added function definitions and made the parallel code functional with

BioConducter.
• Jia Rong Wu developed and implemented the alternate denominator method to correct

for asymmetric datasets.
• Andrew Fernandes, Jean Macklaim and Ruth Grace Wong contributed to the Sum-

FunctionsAitchison.R code.
• Tom Quinn rewrote the t-test and Wilcoxon functions to make them substantially faster.

He also wrote the current aldex.glm function. Tom’s propr18 R package is able to use
the output from aldex.clr.

• Vladimir Mikryukov and everyone named above have contributed bug fixes
• Greg Gloor currently maintains ALDEx2 and had and has roles in documentation, design,

testing and implementation.

9 Version information

Version 1.04 of ALDEx was the version used for the analysis in Macklaim et al.19. This
version was suitable only for two-sample two-group comparisons, and provided only effect size
estimates of difference between groups. ALDEx v1.0.4 is available at:
https://github.com/ggloor/ALDEx2/blob/master/ALDEx\_1.0.4.tar.gz

. No further changes are expected for that version since it can be replicated completely within
ALDEx2 by using only the aldex.clr and aldex.effect commands.
Versions 2.0 to 2.05 were development versions that enabled P value calculations. Version
2.06 of ALDEx2 was the version used for the analysis in20. This version enabled large sample
comparisons by calculating effect size from a random sample of the data rather than from an
exhaustive comparison.
Version 2.07 of ALDEx2 was the initial the modular version that exposed the intermediate
calculations so that investigators could write functions to analyze different experimental
designs. As an example, this version contains an example one-way ANOVA module. This is
identical to the version submitted to Bioconductor as 0.99.1.
Future releases of ALDEx2 now use the Bioconductor versioning numbering.
sessionInfo()

## R version 3.5.0 (2018-04-23)

## Platform: x86_64-apple-darwin17.6.0 (64-bit)

## Running under: macOS High Sierra 10.13.6

##
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## Matrix products: default

## BLAS: /opt/local/Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.dylib

## LAPACK: /opt/local/Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

##

## locale:

## [1] en_CA.UTF-8/en_CA.UTF-8/en_CA.UTF-8/C/en_CA.UTF-8/en_CA.UTF-8

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] ALDEx2_1.11.0 BiocStyle_2.8.2

##

## loaded via a namespace (and not attached):

## [1] Rcpp_0.12.18 compiler_3.5.0

## [3] GenomeInfoDb_1.16.0 XVector_0.20.0

## [5] bitops_1.0-6 tools_3.5.0

## [7] zlibbioc_1.26.0 digest_0.6.15

## [9] evaluate_0.11 lattice_0.20-35

## [11] Matrix_1.2-14 DelayedArray_0.6.2

## [13] yaml_2.1.19 parallel_3.5.0

## [15] xfun_0.3 GenomeInfoDbData_1.1.0

## [17] stringr_1.3.1 knitr_1.20

## [19] S4Vectors_0.18.3 IRanges_2.14.10

## [21] stats4_3.5.0 rprojroot_1.3-2

## [23] multtest_2.36.0 grid_3.5.0

## [25] Biobase_2.40.0 survival_2.41-3

## [27] BiocParallel_1.14.2 rmarkdown_1.10

## [29] bookdown_0.7 magrittr_1.5

## [31] MASS_7.3-49 backports_1.1.2

## [33] htmltools_0.3.6 matrixStats_0.54.0

## [35] BiocGenerics_0.26.0 GenomicRanges_1.32.6

## [37] splines_3.5.0 SummarizedExperiment_1.10.1

## [39] stringi_1.2.4 RCurl_1.95-4.11
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