Package 'semisup'

April 15, 2020

Version 1.10.0

Title Semi-Supervised Mixture Model

Description Useful for detecting SNPs with interactive effects on a quantitative trait. This R packages moves away from testing interaction terms, and moves towards testing whether an individual SNP is involved in any interaction. This reduces the multiple testing burden to one test per SNP, and allows for interactions with unobserved factors. Analysing one SNP at a time, it splits the individuals into two groups, based on the number of minor alleles. If the quantitative trait differs in mean between the two groups, the SNP has a main effect. If the quantitative trait differs in distribution between some individuals in one group and all other individuals, it possibly has an interactive effect. Implicitly, the membership probabilities may suggest potential interacting variables.

biocViews SNP, GenomicVariation, SomaticMutation, Genetics,

Classification, Clustering, DNASeq, Microarray, MultipleComparison

Depends R (>= 3.0.0)

Imports VGAM

Suggests knitr, testthat, SummarizedExperiment

VignetteBuilder knitr

License GPL-3

LazyData true

RoxygenNote 6.1.1

URL https://github.com/rauschenberger/semisup

BugReports https://github.com/rauschenberger/semisup/issues

git_url https://git.bioconductor.org/packages/semisup

git_branch RELEASE_3_10

git_last_commit eb90888

git_last_commit_date 2019-10-29

Date/Publication 2020-04-14

Author Armin Rauschenberger [aut, cre]

Maintainer Armin Rauschenberger <a.rauschenberger@vumc.nl>

2 mixtura

R topics documented:

Index		semisup- mixtura scrutor .	 														 		2
	Index																		6

semisup-package

Semi-supervised mixture model

Description

This R package implements the semi-supervised mixture model. Use mixtura for model fitting, and scrutor for hypothesis testing.

Getting started

Please type the following commands:

utils::vignette("semisup")

?semisup::mixtura
?semisup::scrutor

More information

A Rauschenberger, RX Menezes, MA van de Wiel, NM van Schoor, and MA Jonker (2017). "Detecting SNPs with interactive effects on a quantitative trait", *Manuscript in preparation*.

<a.rauschenberger@vumc.nl>

mixtura

Model fitting

Description

This function fits a semi-supervised mixture model. It simultaneously estimates two mixture components, and assigns the unlabelled observations to these.

Usage

mixtura 3

Arguments

у	observations: numeric vector of length n
z	class labels: integer vector of length n , with entries \emptyset , 1 and NA
dist	distributional assumption: character "norm" (Gaussian), "nbinom" (negative bionomial), or "zinb" (zero-inflated negative binomial)
phi	dispersion parameter: positive numeric, or NULL
pi	zero-inflation parameter: numeric between 0 and 1, or NULL
gamma	offset: numeric vector of length n, or NULL
test	resampling procedure: character " $perm$ " ($permutation$) or "boot" ($parametric$ bootstrap), or NULL
iter	(maximum) number of resampling iterations: positive integer, or NULL
kind	resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate $$
debug	verification of arguments: TRUE or FALSE
	settings EM algorithm: starts, it.em and epsilon (see arguments)

Details

By default, phi and pi are estimated by the maximum likelihood method, and gamma is replaced by a vector of ones.

Value

This function fits and compares a one-component (H0) and a two-component (H1) mixture model.

posterior	probability of belonging to class 1: numeric vector of length n
converge	path of the log-likelihood: numeric vector with maximum length it.em
estim0	parameter estimates under H0: data frame
estim1	parameter estimates under H1: data frame
loglik0	log-likelihood under H0: numeric
loglik1	log-likelihood under H1: numeric
lrts	likelihood-ratio test statistic: positive numeric
p.value	H0 versus H1: numeric between 0 and 1, or NULL

Reference

A Rauschenberger, RX Menezes, MA van de Wiel, NM van Schoor, and MA Jonker (2017). "Detecting SNPs with interactive effects on a quantitative trait", *Manuscript in preparation*.

See Also

Use scrutor for hypothesis testing. All other functions are internal.

4 scrutor

Examples

```
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2,sd=1)
z[(n/4):n] <- NA
# model fitting
mixtura(y,z,dist="norm",test="perm")</pre>
```

scrutor

Hypothesis testing

Description

This function tests whether the unlabelled observations come from a mixture of two distributions.

Usage

```
scrutor(Y, Z, dist = "norm",
    phi = NULL, pi = NULL, gamma = NULL,
    test = "perm", iter = NULL, kind = NULL,
    debug = TRUE, ...)
```

Arguments

Υ	observations: numeric vector of length n, or numeric matrix with n rows (samples) and q columns (variables)
Z	class labels: numeric vector of length n, or numeric matrix with n rows (samples) and p columns (variables), with entries 0 and NA
dist	distributional assumption: character "norm" (Gaussian), "nbinom" (negative bionomial), or "zinb" (zero-inflated negative binomial)
phi	dispersion parameter(s): numeric vector of length q, or NULL (norm: none, nbinom: MLE)
pi	zero-inflation parameter(s): numeric vector of length q, or NULL (norm: none,nbinom: MLE)
gamma	offset: numeric vector of length n, or NULL
test	resampling procedure: character "perm" (permutation) or "boot" (parametric bootstrap), or NULL
iter	(maximum) number of resampling iterations: positive integer, or NULL
kind	resampling accuracy: numeric between 0 and 1, or NULL; all p-values above kind are approximate
debug	verification of arguments: TRUE or FALSE
• • •	settings EM algorithm: starts, it.em and epsilon (see arguments)

Details

By default, phi and pi are estimated by the maximum likelihood method, and gamma is replaced by a vector of ones.

scrutor 5

Value

This function tests a one-component (H0) against a two-component mixture model (H1).

y index observations
z index class labels
lrts test statistic
p.value p-value

Reference

A Rauschenberger, RX Menezes, MA van de Wiel, NM van Schoor, and MA Jonker (2017). "Detecting SNPs with interactive effects on a quantitative trait", *Manuscript in preparation*.

See Also

Use mixtura for model fitting. All other functions are internal.

Examples

```
# data simulation
n <- 100
z <- rep(0:1,each=n/2)
y <- rnorm(n=n,mean=2*z,sd=1)
z[(n/4):n] <- NA
# hypothesis testing
scrutor(y,z,dist="norm")</pre>
```

Index

```
*Topic documentation
semisup-package, 2
*Topic methods
mixtura, 2
scrutor, 4

arguments, 3, 4

internal, 3, 5

mixtura, 2, 2, 5

scrutor, 2, 3, 4
semisup (semisup-package), 2
semisup-package, 2
```