Package 'scMerge'

April 15, 2020

Type Package

Title scMerge: Merging multiple batches of scRNA-seq data
Version 1.2.0
Description Like all gene expression data, single-cell RNA-seq (scRNA-Seq) data suffers from batch effects and other unwanted variations that makes accurate biological interpretations difficult. The scMerge method leverages factor analysis, stably expressed genes (SEGs) and (pseudo) replicates to remove unwanted variations and merge multiple scRNA-Seq data.
This package contains all the necessary functions in the
scMerge pipeline, including the identification of SEGs, replication-identification methods, and merging of scRNA-Seq data.
License GPL-3
Encoding UTF-8
LazyData false
Depends R (>= 3.6.0)
Imports BiocParallel, BiocSingular, cluster, DelayedArray, DelayedMatrixStats, distr, igraph, M3Drop ($>=1.9 .4$), parallel, pdist, proxy, Rcpp ($>=0.12 .18$), RcppEigen ($>=0.3 .3 .4 .0$), ruv, S4Vectors ($>=0.23 .19$), SingleCellExperiment ($>=1.7 .3$), SummarizedExperiment

LinkingTo Rcpp (>= 0.12.18), RcppEigen, testthat

RoxygenNote 6.1.1

Suggests BiocStyle, covr, HDF5Array, knitr, Matrix, rmarkdown, scales, scater, testthat, badger

VignetteBuilder knitr

biocViews BatchEffect, GeneExpression, Normalization, RNASeq, Sequencing, SingleCell, Software, Transcriptomics

URL https://github.com/SydneyBioX/scMerge
BugReports https://github.com/SydneyBioX/scMerge/issues
git_url https://git.bioconductor.org/packages/scMerge
git_branch RELEASE_3_10
git_last_commit b2effcb
git_last_commit_date 2019-10-29

Date/Publication 2020-04-14

```
Author Kevin Wang [aut, cre],
    Yingxin Lin [aut],
    Sydney Bioinformatics and Biometrics Group [fnd]
```

Maintainer Kevin Wang kevin.wang@sydney.edu.au

R topics documented:

eigenMatMult 2
eigenResidop 3
example_sce 3
fastRUVIII 4
ruvSimulate 5
sce_cbind 6
scMerge 7
scReplicate 9
scRUVg 11
scRUVIII 12
scSEGIndex 13
segList 14
segList_ensemblGeneID 14
Index 15
eigenMatMult Fast matrix multiplication using RcppEigen

Description

Fast matrix multiplication using RcppEigen

Usage

eigenMatMult(A, B)

Arguments

A	a matrix
B	a matrix

Value

The matrix product of A times B

Examples

```
A = matrix(0, ncol = 500, nrow = 500)
system.time(A %*% A)
system.time(eigenMatMult(A, A))
```

```
eigenResidop fast matrix residual operator using RcppEigen
```


Description

fast matrix residual operator using RcppEigen

Usage

eigenResidop(A, B)

Arguments

A	a matrix
B	a matrix

Value

The matrix product of

$$
A-B\left(B^{t} B\right)^{-1} B^{t} A
$$

Examples

```
Y = M = diag(1, 500)
system.time(scMerge::eigenResidop(Y, M))
system.time(ruv::residop(Y, M))
```

```
example_sce Subsetted mouse ESC 'SingleCellExperiment' object
```


Description

A dataset containing 300 cells and 2026 genes from two batches of mouse ESC data \#@usage data(example_sce, package $=$ 'scMerge')

Usage

example_sce

Format

A 'SingleCellExperiment' object

Source

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2600/

References

Kolodziejczyk et al.

fastRUVIII A fast version of the ruv::RUVIII algorithm

Description

Perform a fast version of the ruv::RUVIII algorithm for scRNA-Seq data noise estimation

Usage

fastRUVIII(Y, M, ctl, k = NULL, eta = NULL, svd_k = 50, include.intercept $=$ TRUE, average $=$ FALSE, BPPARAM = SerialParam(), BSPARAM = ExactParam(), fullalpha $=$ NULL, return.info = FALSE, inputcheck = TRUE)

Arguments

Y The unnormalised scRNA-Seq data matrix. A m by n matrix, where m is the number of observations and n is the number of features.

M The replicate mapping matrix. The mapping matrix has m rows (one for each observation), and each column represents a set of replicates. The (i, j)-th entry of the mapping matrix is 1 if the i-th observation is in replicate set j, and 0 otherwise. See ruv::RUVIII for more details.
ctl An index vector to specify the negative controls. Either a logical vector of length n or a vector of integers.
$\mathrm{k} \quad$ The number of unwanted factors to remove. This is inherited from the ruvK argument from the scMerge::scMerge function.
eta Gene-wise (as opposed to sample-wise) covariates. See ruv::RUVIII for details.
svd_k If BSPARAM is set to RandomParam or IrlbaParam class from BiocSingular package, then svd_k will be used to used to reduce the computational cost of singular value decomposition. Default to 50 .
include.intercept
When eta is specified (not NULL) but does not already include an intercept term, this will automatically include one. See ruv::RUVIII for details.
average Average replicates after adjustment. See ruv::RUVIII for details.
BPPARAM A BiocParallelParam class object from the BiocParallel package is used. Default is SerialParam().
BSPARAM A BiocSingularParam class object from the BiocSingular package is used. Default is ExactParam().
fullalpha Not used. Please ignore. See ruv::RUVIII for details.
return.info Additional information relating to the computation of normalised matrix. We recommend setting this to true.
inputcheck We recommend setting this to true.

Value

A normalised matrix of the same dimensions as the input matrix Y.

Author(s)

Yingxin Lin, John Ormerod, Kevin Wang

Examples

```
\(\mathrm{L}=\) ruvSimulate ( \(\mathrm{m}=200, \mathrm{n}=500\), \(\mathrm{nc}=400\), nCell types \(=3\), \(\mathrm{nBatch}=2\), lambda \(=0.1\), \(\mathrm{sce}=\) FALSE \()\)
\(Y=L \$ Y ; M=L \$ M ; c t l=L \$ c t l\)
improved1 = scMerge: :fastRUVIII( \(Y=Y, M=M\), ctl = ctl,
\(\mathrm{k}=20\), BSPARAM = BiocSingular::ExactParam())
improved2 = scMerge: :fastRUVIII(Y = Y, \(M=M\), ctl = ctl,
\(k=20\), BSPARAM = BiocSingular::RandomParam(), svd_k = 50)
old = ruv::RUVIII(Y = Y, M = M, ctl = ctl, \(k=20\) )
all.equal(improved1, old)
all.equal(improved2, old)
```

```
ruvSimulate Simulate a simple matrix or SingleCellExperiment to test internals of
    scMerge
```


Description

This function is designed to generate Poisson-random-variable data matrix to test on the internal algorithms of scMerge. It does not represent real biological situations and it is not intended to be used by end-users.

Usage

```
ruvSimulate(m = 100, n = 5000, nc = floor(n/2), nCelltypes = 3,
    nBatch = 2, k = 20, lambda = 0.1, sce = FALSE)
```


Arguments

$m \quad$ Number of observations
$\mathrm{n} \quad$ Number of features
nc Number of negative controls
nCelltypes Number of cell-types
nBatch Number of batches
$k \quad$ Number of unwanted factors in simulation
lambda Rate parameter for random Poisson generation
sce If TRUE, returns a SingleCellExperiment object

Value

If sce is FALSE, then the output is a list consists of

- Y, expression matrix generated through Poisson random variables,
- ctl, a logical vector indicating the control genes,
- M, replicate mapping matrix,
- cellTypes, a vector indicating simulated cell types
- batch, a vector indicating simulated batches
if sce is TRUE, a SingleCellExperiment wrapper will be applied on all above simulated objects.

Examples

```
set.seed(1)
L = ruvSimulate(m = 200, n = 1000, nc = 200,
nCelltypes = 3, nBatch = 2, lambda = 0.1, k = 10, sce = TRUE)
print(L)
example <- scMerge(sce_combine = L,
    ctl = paste0('gene', 1:500),
    cell_type = L$cellTypes,
    ruvK = 10,
    assay_name = 'scMerge')
scater::plotPCA(L, colour_by = 'cellTypes', shape = 'batch',
    run_args = list(exprs_values = 'logcounts'))
scater::plotPCA(example, colour_by = 'cellTypes', shape = 'batch',
    run_args = list(exprs_values = 'scMerge'))
```

sce_cbind Combind several SingleCellExperiment objects from different
batches/experiments

Description

Combind several SingleCellExperiment objects from different batches/experiments.

Usage

```
sce_cbind(sce_list, method = "intersect", cut_off_batch = 0.01,
    cut_off_overall = 0.01, exprs = c("counts", "logcounts"),
    colData_names = NULL, batch_names = NULL)
```


Arguments

sce_list A list contains the SingleCellExperiment Object from each batch
method A string indicates the method of combining the gene expression matrix, either union or intersect. Default to intersect. union only supports matrix class.
cut_off_batch A numeric vector indicating the cut-off for the proportion of a gene is expressed within each batch
cut_off_overall
A numeric vector indicating the cut-off for the proportion of a gene is expressed overall data
exprs A string vector indicating the expression matrices to be combined. The first assay named will be used to determine the proportion of zeores.
colData_names A string vector indicating the colData that are combined
batch_names A string vector indicating the batch names for the output sce object

Value

A SingleCellExperiment object with the list of SCE objects combined.

Author(s)

Yingxin Lin

Examples

```
data('example_sce', package = 'scMerge')
batch_names<-unique(example_sce$batch)
sce_list<-list(example_sce[,example_sce$batch=='batch2'],
    example_sce[,example_sce$batch=='batch3'])
sce_combine<-sce_cbind(sce_list,batch_names=batch_names)
```

scMerge Perform the scMerge algorithm

Description

Merge single-cell RNA-seq data from different batches and experiments leveraging (pseudo)-replicates and control genes.

Usage

scMerge(sce_combine, ctl = NULL, kmeansK = NULL, exprs = "logcounts", hvg_exprs = "counts", marker = NULL, marker_list = NULL, ruvK = 20, replicate_prop = 1, cell_type = NULL, cell_type_match = FALSE, cell_type_inc = NULL, BSPARAM = ExactParam(), svd_k = 50, dist = "cor", WV = NULL, WV_marker = NULL, BPPARAM = SerialParam(), return_all_RUV = FALSE, BACKEND = NULL, assay_name = NULL, plot_igraph = TRUE, verbose $=$ FALSE)

Arguments

sce_combine A SingleCellExperiment object contains the batch-combined matrix with batch info in colData.
ctl A character vector of negative control. It should have a non-empty intersection with the rows of sce_combine.
kmeansK A vector indicates the kmeans's K for each batch. The length of kmeansK needs to be the same as the number of batch.
exprs A string indicating the name of the assay requiring batch correction in sce_combine, default is logcounts.
hvg_exprs A string indicating the assay that to be used for highly variable genes identification in sce_combine, default is counts.
marker An optional vector of markers, to be used in calculation of mutual nearest cluster. If no markers input, highly variable genes will be used instead.
marker_list An optional list of markers for each batch, which will be used in calculation of mutual nearest cluster.
ruvK An optional integer/vector indicating the number of unwanted variation factors that are removed, default is 20 .
\(\left.$$
\begin{array}{ll}\text { replicate_prop } \begin{array}{ll}\text { A number indicating the ratio of cells that are included in pseudo-replicates, } \\
\text { ranges from } 0 \text { to 1. Default to 1. }\end{array} \\
\text { cell_type } & \begin{array}{l}\text { An optional vector indicating the cell type information for each cell in the batch- } \\
\text { combined matrix. If it is NULL, pseudo-replicate procedure will be run to identify } \\
\text { cell type. }\end{array} \\
\text { cell_type_match }\end{array}
$$ \quad \begin{array}{l}An optional logical input for whether to find mutual nearest cluster using cell

type information.\end{array}\right]\)| An optional vector indicating the indices of the cells that will be used to super- |
| :--- |
| vise the pseudo-replicate procedure. |

Value

Returns a SingleCellExperiment object with following components:

- assays: the original assays and also the normalised matrix
- metadata: containing the ruvK vector, ruvK_optimal based on F-score, and the replicate matrix

Author(s)
Yingxin Lin, Kevin Wang

Examples

```
## Loading example data
data('example_sce', package = 'scMerge')
## Previously computed stably expressed genes
data('segList_ensemblGeneID', package = 'scMerge')
## Running an example data with minimal inputs
sce_mESC <- scMerge(sce_combine = example_sce,
ctl = segList_ensemblGeneID$mouse$mouse_scSEG,
kmeansK = c(3, 3),
assay_name = 'scMerge')
scater::plotPCA(sce_mESC, colour_by = 'cellTypes', shape = 'batch',
    run_args = list(exprs_values = 'logcounts'))
scater::plotPCA(sce_mESC, colour_by = 'cellTypes', shape = 'batch',
    run_args = list(exprs_values = 'scMerge'))
```

```
scReplicate
```

Create replicate matrix for scMerge algorithm

Description

Create replicate matrix for scMerge algorithm using un-/semi-/supervised approaches.

Usage

```
scReplicate(sce_combine, batch = NULL, kmeansK = NULL,
        exprs = "logcounts", hvg_exprs = "counts", marker = NULL,
        marker_list \(=\) NULL, replicate_prop \(=1\), cell_type \(=\) NULL,
        cell_type_match = FALSE, cell_type_inc = NULL, dist = "cor",
        WV = NULL, WV_marker = NULL, BPPARAM = SerialParam(),
        return_all = FALSE, BSPARAM = ExactParam(), plot_igraph = TRUE,
        verbose = FALSE)
```


Arguments

sce_combine A SingleCellExperiment object contains the batch-combined matrix with batch info in colData
batch A vector indicates the batch information for each cell in the batch-combined matrix.
kmeansK A vector indicates the kmeans's K for each batch, length of kmeansK needs to be the same as the number of batch.
exprs A string indicates the assay that are used for batch correction, default is logcounts
hvg_exprs A string indicates the assay that are used for highly variable genes identification, default is counts
marker A vector of markers, which will be used in calculation of mutual nearest cluster. If no markers input, highly variable genes will be used instead
marker_list A list of markers for each batch, which will be used in calculation of mutual nearest cluster.
replicate_prop A number indicating the ratio of cells that are included in pseudo-replicates, ranges from 0 to 1 . Default to 1 .

cell_type | A vector indicates the cell type information for each cell in the batch-combined |
| :--- |
| matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type. |

cell_type_match

cell_type_inc | Whether find mutual nearest cluster using cell type information |
| :--- |
| A vector indicates the indices of the cells that will be used to supervise the |
| pseudo-replicate procedure |
| The distance metrics that are used in the calculation of the mutual nearest cluster, |
| default is Pearson correlation. |

dist	A vector indicates the wanted variation factor other than cell type info, such as
cell stages.	

WV	A vector indicates the markers of the wanted variation.

WV_marker

BPPARAM \quad| A BiocParallelParam class object from the BiocParallel package is used. |
| :--- |
| Default is SerialParam(). |

Value

If return_all is FALSE, return a replicate matrix. If return_sce is TRUE, return the followings
repMat replicate matrix
$\mathrm{mnc} \quad$ mutual nearest cluster
replicate vector
replicate vector
HVG highly variable genes used in scReplicate
A cell-replicates mapping matrix. Each row correspond to a cell from the input expression matrix, and each column correspond to a cell-cluster/cell-type. An element of the mapping matrix is 1 if the scReplicate algorithm determines that this cell should belong to that cell cluster and 0 otherwise.

Author(s)

Yingxin Lin, Kevin Wang

Examples

```
## Loading example data
set.seed(1)
data('example_sce', package = 'scMerge')
scRep_result = scReplicate(
    sce_combine = example_sce,
    batch = example_sce$batch,
    kmeansK = c(3,3))
```

scRUVg RUVg function for single cell (under development)

Description

Modified based on RUV2 from package ruv and RUVg from package RUVSeq function (see these function's documentations for full documentations and usage)

Usage

```
\(\operatorname{scRUVg}(\mathrm{Y}, \mathrm{ctl}, \mathrm{k}, \mathrm{Z}=1\), eta \(=\mathrm{NULL}\), include.intercept \(=\) TRUE,
    fullw \(=\) NULL, svdyc \(=\) NULL)
```


Arguments

$\mathrm{Y} \quad$ The data. A m by n matrix, where m is the number of observations and n is the number of features.
ctl index vector to specify the negative controls.
$k \quad$ The number of unwanted factors to use.
Z
Any additional covariates to include in the model.
eta Gene-wise (as opposed to sample-wise) covariates.
include.intercept
Applies to both Z and eta. When Z or eta (or both) is specified (not NULL) but does not already include an intercept term, this will automatically include one. If only one of Z or eta should include an intercept, this variable should be set to FALSE, and the intercept term should be included manually where desired.
fullW Can be included to speed up execution. Is returned by previous calls of scRUVg
svdyc Can be included to speed up execution. For internal use; please use fullW instead.

Value

A list consists of:

- A matrix newY, the normalised matrix,
- A matrix W, the unwanted variation matrix, and ;
- A matrix alpha, this corresponding coefficient matrix for W.

Author(s)

Yingxin Lin, Kevin Wang

Examples

```
L = scMerge::ruvSimulate(m = 80, n = 1000, nc = 50, nCelltypes = 10)
Y = L$Y; ctl = L$ctl
ruvgRes = scMerge::scRUVg(Y = Y, ctl = ctl, k = 20)
```

scRUVIII scRUVIII: RUVIII algorithm optimised for single cell data

Description

A function to perform location/scale adjustment to data as the input of RUVIII which also provides the option to select optimal RUVk according to the silhouette coefficient

Usage

$$
\begin{aligned}
& \text { scRUVIII (Y = Y, M = M, ctl = ctl, fullalpha = NULL, } k=k \text {, } \\
& \text { cell_type = NULL, batch = NULL, return_all_RUV = TRUE, } \\
& \text { BPPARAM = SerialParam(), BSPARAM = ExactParam(), svd_k = 50) }
\end{aligned}
$$

Arguments

$Y \quad$ The unnormalised SC data. A m by n matrix, where m is the number of observations and n is the number of features.

M The replicate mapping matrix. The mapping matrix has m rows (one for each observation), and each column represents a set of replicates. The (i, j)-th entry of the mapping matrix is 1 if the i-th observation is in replicate set j , and 0 otherwise. See ruv::RUVIII for more details.
ctl An index vector to specify the negative controls. Either a logical vector of length n or a vector of integers.
fullalpha Not used. Please ignore.
$\mathrm{k} \quad$ The number of unwanted factors to remove. This is inherited from the ruvK argument from the scMerge::scMerge function.
cell_type An optional vector indicating the cell type information for each cell in the batchcombined matrix. If it is NULL, pseudo-replicate procedure will be run to identify cell type.
batch Batch information inherited from the scMerge::scMerge function.
return_all_RUV Whether to return extra information on the RUV function, inherited from the scMerge::scMerge function
BPPARAM A BiocParallelParam class object from the BiocParallel package is used. Default is SerialParam().
BSPARAM A BiocSingularParam class object from the BiocSingular package is used. Default is ExactParam().
svd_k If BSPARAM is set to RandomParam or IrlbaParam class from BiocSingular package, then svd_k will be used to used to reduce the computational cost of singular value decomposition. Default to 50 .

Value

A list consists of:

- RUV-normalised matrices: If k has multiple values, then the RUV-normalised matrices using all the supplied k values will be returned.
- optimal_ruvK: The optimal RUV k value as determined by silhouette coefficient.

Author(s)

Yingxin Lin, Kevin Wang

Examples

```
L = ruvSimulate (m = 200, n = 1000, nc=100, nCelltypes = 3, nBatch = 2, lambda = 0.1, sce = FALSE)
Y = t(log2(L$Y + 1L)); M = L$M; ctl = L$ctl; batch = L$batch;
res = scRUVIII(Y = Y, M = M, ctl = ctl, k = c(5, 10, 15, 20), batch = batch)
```

```
scSEGIndex Single Cell Stably Express Gene Index
```


Description

This function computes the single-cell Stably Expressed Gene (scSEG) index from Lin. et al. (2019) for a given single-cell count data matrix. Each gene in the data is fitted with a gammanormal mixture model and the final SEG index is computed as an average of key parameters that measure the expression stability of a gene.
We recommend using either the pre-computed genes (see "See Also" below) or the top SEG genes from an user's own data as the control genes in the scMerge function (see the ctl argument in the scMerge function).

Usage

```
scSEGIndex(exprs_mat, cell_type = NULL,
    BPPARAM = SerialParam(progressbar = TRUE))
```


Arguments

exprs_mat A log-transformed single-cell data, assumed to have no batch effect and covered a wide range of cell types. A n by matrix, where n is the number of genes and m is the number of cells.
cell_type A vector indicating the cell type information for each cell in the gene expression matrix. If it is NULL, the function calculates the scSEG index without using F-statistics.

BPPARAM A BiocParallelParam class object from the BiocParallel package is used. Default is SerialParam(progressbar = TRUE).

Value

Returns a data frame. Each row is a gene and each column is a statistic relating to the stability of expression of each gene. The main statistic is the segIdx column, which is the SEG index.

Author(s)

Shila Ghazanfar, Yingxin Lin, Pengyi Yang

References

Evaluating stably expressed genes in single cells (2019). doi:10.1093/gigascience/giz106.

See Also

Download human SEG directly from this link; Download mouse SEG directly from this link.

Examples

```
## Loading example data
data('example_sce', package = 'scMerge')
## subsetting genes to illustrate usage.
exprs_mat = SummarizedExperiment::assay(example_sce, 'logcounts')[1:110, 1:20]
set.seed(1)
result1 = scSEGIndex(exprs_mat = exprs_mat)
## If parallelisation is needed:
param = BiocParallel::MulticoreParam(workers = 2, progressbar = TRUE)
result2 = scSEGIndex(exprs_mat = exprs_mat, BPPARAM = param)
## Closing the parallelisation
BiocParallel::register(BPPARAM = BiocParallel::SerialParam())
```

```
segList Stably expressed gene list in official gene symbols for both human and
    mouse
```


Description

A list includes the stably expressed genes for both human and mouse

Usage

```
data(segList, package = 'scMerge')
```


Format

An object of class list of length 2 .
\qquad mouse

Description

A list includes the stably expressed genes for both human and mouse

Usage

data(segList_ensemblGeneID, package = 'scMerge')

Format

An object of class list of length 2 .

Index

```
*Topic datasets
    example_sce, 3
    segList,14
    segList_ensemblGeneID,14
eigenMatMult, 2
eigenResidop, 3
example_sce, 3
fastRUVIII, 4
ruvSimulate, 5
sce_cbind,6
scMerge,7
scReplicate, }
scRUVg, 11
scRUVIII, 12
scSEGIndex, 13
segList,14
segList_ensemblGeneID,14
```

