Package 'microbiomeDASim'

April 15, 2020

Type Package

Title Microbiome Differential Abundance Simulation

Version 1.0.0

Author Justin Williams, Hector Corrada Bravo, Jennifer Tom, Joseph Nathaniel Paulson

Maintainer Justin Williams <williazo@ucla.edu>

Description A toolkit for simulating differential microbiome data designed for longitudinal analyses. Several functional forms may be specified for the mean trend. Observations are drawn from a multivariate normal model. The objective of this package is to be able to simulate data in order to accurately compare different longitudinal methods for differential abundance.

License MIT + file LICENSE

Imports graphics, ggplot2, MASS, tmvtnorm, Matrix, mvtnorm, pbapply, stats

Depends R (>= 3.6.0)

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 6.1.1

Suggests testthat (>= 2.1.0), knitr, devtools

VignetteBuilder knitr

biocViews Microbiome, Visualization, Software

BugReports https://github.com/williazo/microbiomeDASim/issues

URL https://github.com/williazo/microbiomeDASim

git_url https://git.bioconductor.org/packages/microbiomeDASim

git_branch RELEASE_3_10

git_last_commit aa002e3

git_last_commit_date 2019-10-29

Date/Publication 2020-04-14

R topics documented:

form_beta_check	2
gen_norm_microbiome	3
ggplot_spaghetti	4
nean_trend	5
nean_trend_beta_vec	7
nvrnorm_corr_gen	8
nvrnorm_sim	9
	11

Index

form_beta_check Beta Specification Check

Description

Function for checking that the appopriate beta parameters are specified for each of the mean trend specifications

Usage

form_beta_check(form, beta, IP, timepoints)

Arguments

form	character value specifying the type of time trend. Options include 'linear', 'quadratic', 'cubic', 'M', 'W', 'L_up', and 'L_down'.
beta	vector specifying the appropriate parameters for functional trend. See details of mean_trend for explanation for each form
IP	vector specifying the inflection points. See details of mean_trend for explanation for each form
timepoints	numeric vector specifying the points to fit the functional trend. @keywords internal

Value

Nothing returned unless an error is returned.

gen_norm_microbiome Generate Longitduinal Differential Abundance from Multivariate Normal

Description

Generate Longitduinal Differential Abundance from Multivariate Normal

Usage

```
gen_norm_microbiome(features = 10, diff_abun_features = 5, n_control,
 n_treat, control_mean, sigma, num_timepoints, rho, corr_str = c("ar1",
 "compound", "ind"), func_form = c("linear", "quadratic", "cubic", "M",
 "W", "L_up", "L_down"), beta, IP = NULL, missing_pct,
 missing_per_subject, miss_val = NA, dis_plot = FALSE,
 plot_trend = FALSE, zero_trunc = TRUE)
```

features	numeric value specifying the number of features/microbes to simulate. Default is 10.
diff_abun_featu	ires
	numeric value specifying the number of differentially abundant features. Default is 5.
n_control	integer value specifying the number of control individuals
n_treat	integer value specifying the number of treated individuals
control_mean	numeric value specifying the mean value for control subjects. all control sub- jects are assummed to have the same population mean value.
sigma	numeric value specifying the global population standard deviation for both con- trol and treated individuals.
num_timepoints	integer value specifying the number of timepoints per subject.
rho	value for the correlation parameter. must be between [0, 1]. see mvrnorm_corr_gen for details.
corr_str	correlation structure selected. see mvrnorm_corr_gen for details.
func_form	character value specifying the functional form for the longitduinal mean trend. see mean_trend for details.
beta	vector value specifying the parameters for the differential abundance function. see mean_trend for details.
IP	vector specifying any inflection points. depends on the type of functional form specified. see mean_trend for details. by default this is set to NULL.
missing_pct	numeric value that must be between $[0, \1]$ that specifies what percentage of the individuals will have missing values.
missing_per_sub	ject
	integer value specifying how many observations per subject should be dropped. note that we assume that all individuals must have baseline value, meaning that the maximum number of missing_per_subject is equal to num_timepoints - 1.

miss_val	value used to induce missingness from the simulated data. by default missing values are assummed to be NA but other common choices include 0.
dis_plot	logical argument on whether to plot the simulated data or not. by default plotting is turned off.
plot_trend	specifies whether to plot the true mean trend. see mean_trend for details.
zero_trunc	logical indicator designating whether simulated outcomes should be zero trun- cated. default is set to TRUE

Value

This function returns a list with the following objects

Y The full simulated feature sample matrix where each row represent a feature and each column a sample. Note that the differential and non-differential bugs are marked by row.names

Examples

```
gen_norm_microbiome(features = 5, diff_abun_features = 2,
    n_control = 10, n_treat = 10, control_mean = 8, sigma = 1,
    num_timepoints = 5, rho = 0.8, corr_str = "compound",
    func_form = "linear", beta = c(0, 1), missing_pct = 0.3,
    missing_per_subject = 2)
```

ggplot_spaghetti Spaghetti Plots using ggplot2

Description

This function allows the user to create spaghetti plots for individuals with time varying covariates. You can also break this down into subgroups to analyze different trentds.

Usage

```
ggplot_spaghetti(y, id, time, alpha = 0.2, method = "loess", jit = 0,
group = NULL)
```

У	This is the y-axis parameter to specify. Generally it is a continuous variable.
id	This is the id parameter that identifies the unique individuals or units.
time	This is the time vector and must be numeric.
alpha	Scalar value between [0,1] that specifies the transparencey of the lineplots.
method	Character value that specifies which type of method to use for fitting. Optional methods come from geom_smooth function.
jit	Scalar value that specifies how much you want to jitter each individual observa- tion. Useful if many of the values share the same y values at a time point.
group	Specifies a grouping variable to be used, and will plot it by color on one single plot.

mean_trend

Details

Note that the data must be in long format.

Value

Plots a time series data by each individual/unit with group trends overlayed.

Examples

```
mean_trend
```

Function for Generating Various Longitudinal Mean Trends

Description

In order to investigate different functional forms of longitudinal differential abundance we allow the mean time trend to take a variety of forms. These functional forms include linear, quadratic, cubic, M, W, L_up, or L_down. For each form the direction/concavity/fold change can be specified using the beta parameter.

Usage

```
mean_trend(timepoints, form = c("linear", "quadratic", "cubic", "M", "W",
    "L_up", "L_down"), beta, IP = NULL, plot_trend = FALSE)
```

timepoints	numeric vector specifying the points to fit the functional trend.
form	character value specifying the type of time trend. Options include 'linear', 'quadratic', 'cubic', 'M', 'W', 'L_up', and 'L_down'.
beta	vector specifying the appropriate parameters for the equation. In the case of 'linear', beta should be a two-dimensional vector specifying the intercept and slope. See details for the further explanation of the beta value for each form.
IP	vector specifying the inflection points where changes occur for functional forms M, W, and L trends.
plot_trend	logical value indicating whether a plot should be produced for the time trend. By default this is set to TRUE.

Details

Linear Form Notes:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

• Sign of β_1 determines whether the trend is increasing (+) or decreasing (-)

Quadratic Form Notes:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

- Critical point for quadratic function occurs at the point $\frac{-\beta_1}{2\beta_2}$
- β_2 determines whether the quadratic is concave up (+) or concave down (-)

Cubic Form Notes:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

• Point of Inflection for cubic function occurs $\frac{-\beta_2}{(3\beta_2)}$

• Critical points for cubic function occur at $\frac{-\beta_2 \pm \sqrt{\beta_2^2 - 3\beta_1\beta_3}}{3\beta_3}$

• Can generate piecewise linear trends, i.e. 'V' form, by placing either one of the IP points outside of the timepoints specified

M/W Form Notes:

- Must specify beta as (β_0, β_1) and IP as (IP_1, IP_2, IP_3)
- This form should be specified with an initial intercept, β_0 , and slope, β_1 , that will connect to the first point of change (IP) specified.
- Subsequent slopes are constructed such that the mean value at the second IP value and final timepoint are 0
- The mean value at the third IP is set to be equal to the calculcated mean value at the first IP based on the specified intercept and slope.
- β_0 =intercept, i.e. timepoint when y=0
- β_1 =slope between β_0 and IP_1

L_up Form Notes:

The structure of this form assumes that there is no trend from t_1 to IP_1 . Then at the point of change specified, IP_1 , there occurs a linearly increasing trend with slope equal to β_{slope} up to the last specified timepoint t_q .

- Must specify beta as (β_{slope}) , and must be positive
- Specify a single point of change (IP) variable where positive trend will start
- IP must be between $[t_1, t_q]$

L_down Form Notes:

Similarly, the L_down form assumes that there are two region within the range of timepoints. The first region is a decreasing trend and the second region has no trend. The decreasing trend must start with a Y intercept greater than zero, and the slope must be specified as negative. There is one point of change (IP), but this is calculated automatically based on the values of the Y intercept and slope provided, IP= $-\beta_{yintercept}/\beta_{slope}$.

- Must specify beta as $(\beta_{yintercept}, \beta_{slope})$ where $\beta_{yintercept} > 0$ and $\beta_{slope} < 0$
- IP variable should be specified as NULL, if value is provided it will be ignored.

Value

This function returns a list of the following

form - character value repeating the form selected

trend - data.frame with the variables mu representing the estimated mean value at timepoints used for fitting the trend

beta - returning the numeric vector used to fit the functional form

Examples

mean_trend_beta_vec Create beta vector for mean_trend for all functional forms

Description

Create beta vector for mean_trend for all functional forms

Usage

```
mean_trend_beta_vec(form, beta, IP, timepoints)
```

Arguments

form	character value specifying the type of time trend. Options include 'linear', 'quadratic', 'cubic', 'M', 'W', 'L_up', and 'L_down'.
beta	vector specifying the appropriate parameters for functional trend. See details of mean_trend for explanation for each form
IP	vector specifying the inflection points. See details of mean_trend for explana- tion for each form
timepoints	numeric vector specifying the points to fit the functional trend. @keywords internal

Value

Vector with beta values used to create mean_tend

mvrnorm_corr_gen

Description

For this methodology we assume that we draw a set of n independent each with q_i observations.

Usage

```
mvrnorm_corr_gen(n, obs, mu, sigma, rho, corr_str = c("ar1", "compound",
    "ind"), zero_trunc = TRUE)
```

Arguments

n	integer scalar representing the total number of individuals
obs	integer or vector specifying the number of observations per indivdiual. If an integer then all indivdiuals are assummed to have the same number of observations. If a vector, then the vector must have length equal to n where each element specifies the number of observations for the i^{th} individual.
mu	integer or vector specifying the mean value for individuals. If an integer then all individuals are assummed to have the same mean. If a vector, then the vector must have length equal to n where each element specifies the mean for the i^{th} individual.
sigma	numeric scalar or vector specifying the standard deviation for observations.
rho	numeric scalar value between [0, 1] specifying the amount of correlation be- tween. assumes that the correlation is consistent for all subjects.
corr_str	character value specifying the correlation structure. Currently available methods are 'ar1', 'compound', and 'ind' which correspond to first-order autoregressive, compound or equicorrelation, and independence respecitvely.
zero_trunc	logical value to specifying whether the generating distribution should come from a multivariate zero truncated normal or an untruncated multivariate normal. by default we assume that zero truncation occurs since this is assumed in our microbiome setting.

Value

This function returns a list with the following objects:

df - data.frame object with complete outcome Y, subject ID, time, group, and outcome with missing data

Y - vector of complete outcome

Mu - vector of complete mean specifications used during simulation

Sigma - block diagonal symmetric matrix of complete data used during simulation

N - total number of observations

Examples

```
mvrnorm_corr_gen(n=15, obs=4, mu=20, sigma=2, rho=0.9, corr_str="ar1")
```

mvrnorm_sim

Description

This function is used in the gen_norm_microbiome call when the user specified the method as mvrnorm.

Usage

```
mvrnorm_sim(n_control, n_treat, control_mean, sigma, num_timepoints, rho,
    corr_str = c("ar1", "compound", "ind"), func_form = c("linear",
    "quadratic", "cubic", "M", "W", "L_up", "L_down"), beta, IP = NULL,
    missing_pct, missing_per_subject, miss_val = NA, dis_plot = FALSE,
    plot_trend = FALSE, zero_trunc = TRUE)
```

n_control	integer value specifying the number of control individuals
n_treat	integer value specifying the number of treated individuals
control_mean	numeric value specifying the mean value for control subjects. all control subjects are assummed to have the same population mean value.
sigma	numeric value specifying the global population standard deviation for both con- trol and treated individuals.
num_timepoints	integer value specifying the number of timepoints per subject.
rho	value for the correlation parameter. must be between [0, 1]. see mvrnorm_corr_gen for details.
corr_str	correlation structure selected. see mvrnorm_corr_gen for details.
func_form	character value specifying the functional form for the longitduinal mean trend. see mean_trend for details.
beta	vector value specifying the parameters for the differential abundance function. see mean_trend for details.
IP	vector specifying any inflection points. depends on the type of functional form specified. see mean_trend for details. by default this is set to NULL.
missing_pct	numeric value that must be between $[0, \1]$ that specifies what percentage of the individuals will have missing values.
missing_per_sub	oject
	integer value specifying how many observations per subject should be dropped. note that we assume that all individuals must have baseline value, meaning that the maximum number of missing_per_subject is equal to num_timepoints - 1.
miss_val	value used to induce missingness from the simulated data. by default missing values are assummed to be NA but other common choices include 0.
dis_plot	logical argument on whether to plot the simulated data or not. by default plotting is turned off.
plot_trend	specifies whether to plot the true mean trend. see mean_trend for details.
zero_trunc	logical indicator designating whether simulated outcomes should be zero trun- cated. default is set to TRUE

Value

This function returns a list with the following objects:

df - data.frame object with complete outcome Y, subject ID, time, group, and outcome with missing data

Y - vector of complete outcome

Mu - vector of complete mean specifications used during simulation

Sigma - block diagonal symmetric matrix of complete data used during simulation

N - total number of observations

miss_data - data.frame object that lists which ID's and timepoints were randomly selected to induce missingness

Y_obs - vector of outcome with induced missingness

Examples

#total number of observations is 2(num_subjects_per_group)(num_timeponts)
sim_obj\$N

#there should be approximately 60% of the IDs with missing observations length(unique(sim_obj\$miss_data\$miss_id))/length(unique(sim_obj\$df\$ID))

```
#checking the subject covariance structure
sim_obj$Sigma[seq_len(5), seq_len(5)]
```

Index

form_beta_check, 2

gen_norm_microbiome, 3, 9
geom_smooth, 4
ggplot_spaghetti, 4

mean_trend, 2-4, 5, 7, 9
mean_trend_beta_vec, 7
mvrnorm_corr_gen, 3, 8, 9
mvrnorm_sim, 9