Package 'bigmelon'

April 15, 2020

Type Package
Title Illumina methylation array analysis for large experiments
Version 1.12.0
Description Methods for working with Illumina arrays using gdsfmt.
License GPL-3
Depends R (>= 3.3), wateRmelon (>= 1.25.0), gdsfmt (>= 1.0.4), methods, minfi (>= 1.21.0), Biobase, methylumi
Imports stats, utils, GEOquery, graphics, BiocGenerics
Suggests BiocGenerics, BiocStyle, minfiData, parallel, IlluminaHumanMethylation450kanno.ilmn12.hg19, IlluminaHumanMethylationEPICanno.ilm10b2.hg19, bumphunter
LazyLoad yes
Collate zzz.R es2gds.R dasenGds.R dbGdsn.R dfsfitGdsn.R gds2mlumi.R gdsnclass_methods.R inout.R pfilterGds.R prcompGdsn.R pwodGdsn.R qnGdsn.R comboGds.R ranknorm.R GEOtoGDS.R ecc.gdsn.R bumphunterGdsn.R
biocViews DNAMethylation, Microarray, TwoChannel, Preprocessing, QualityControl, MethylationArray, DataImport, CpGIsland
NeedsCompilation no
git_url https://git.bioconductor.org/packages/bigmelon
git_branch RELEASE_3_10
git_last_commit c9d2cfb
git_last_commit_date 2019-10-29
Date/Publication 2020-04-14
Author Tyler J. Gorrie-Stone [cre, aut], Ayden Saffari [aut], Karim Malki [aut], Leonard C. Schalkwyk [aut]
Maintainer Tyler J. Gorrie-Stone <tgorri@essex.ac.uk></tgorri@essex.ac.uk>
R topics documented:
bigmelon-package

2 bigmelon-package

bigm	elon-package	0			Genomic Data and modifica-	
Index						2 4
	wm-port	• • • • • •	 	 	 	23
	redirect.gds					
	pwod.gdsn		 	 	 	21
	prcomp.gds.class .		 	 	 	20
	pfilter.gds		 	 	 	19
	iadd		 	 	 	18
	getquantilesandrank					
	GEOtoGDS					
	gds2mlumi					
	finalreport2gds					
	estimateCellCounts					
	es2gds					
	dasenrank					
	cantaloupe combo.gds					
	bumphunterEngine.					
	bigmelon-normaliza					
	bigmelon-accessors					
	backup.gdsn					

Description

Functions for storing Illumina array data as CoreArray Genomic Data Structure (GDS) data files (via the gdsfmt package), appending these files , and applying array normalization methods from the wateRmelon package.

Details

Package: bigmelon
Type: Package
Version: 1.1.13
Date: 2017-04-06
License: GPL3

Author(s)

Tyler Gorrie-Stone Leonard C Schalkwyk, Ayden Saffari, Karim Malki. Who to contact: <tgorri@essex.ac.uk>, <leonard.schalkwyk@kcl.ac.uk>

app2gds 3

References

[1]Pidsley R, Wong CCY, Volta M, Lunnon K, Mill J, Schalkwyk LC: A data-driven approach to preprocessing Illumina 450K methylation array data. BMC genomics, 14(1), 293.

See Also

es2gds, dasen, wateRmelon, gdsfmt., methylumi.

app2gds	Append a MethyLumiSet object to a CoreArray Genomic Data Struc-
	ture (GDS) data file

Description

This function will append a MethyLumiSet data object to a CoreArray Genomic Data Structure(GDS) data file, and return as a gds.class object.

Usage

```
app2gds(m, bmln)
```

Arguments

m The MethyLumiSet object to be appended to the CoreArray Genomic Data

Structure (GDS) data file

bmln Either: A gds.class object

Or: A character string specifying the name of an existing .gds file to write to. Or: A character string specifying the name of a new .gds file to write to

Details

Currently, the function only works with MethylumiSet objects and will produce unexpected results if the number of rows of the new objects does not match the existing .gds object. To prevent any errors from occuring it is recommended that raw .idat files are read in with readEPIC or appended iadd to ensure that all rows are the same length and have the same annotation.

Value

A gds.class object, which points to the appended .gds file.

Author(s)

Leonard C Schalkwyk, Ayden Saffari, Tyler Gorrie-Stone Who to contact: <tgorri@essex.ac.uk>

See Also

```
es2gds, iadd.
```

4 backup.gdsn

Examples

```
#load example dataset
data(melon)

#split data into halves
melon_1 <- melon[,1:6]
melon_2 <- melon[,7:12]

#convert first half to gds
e <- es2gds(melon_1,'1_half_melon.gds')

#append second half to existing gds file
f <- app2gds(melon_2,e)

closefn.gds(e)
unlink("1_half_melon.gds")</pre>
```

backup.gdsn

Copy gds node to a backup folder within gds object

Description

Quick function that will copy designated gdsn.class node within a gds object to a 'backup' folder. If 'backup' folder does not exist, this is created. This is a wrapper to copyto.gdsn which should be used if one wishes to copy a gds node to a seperate gds file.

Usage

```
backup.gdsn(gds = NULL, node)
```

Arguments

gds If NULL, function will call getfolder.gdsn to find the root node. Otherwise,

user can specify a separate gds.class object to copy the specified node to.

node gdsn.class object (a gds node)

Value

gds object is modified to have a new folder 'backup' with supplied node copied inside

Author(s)

Tyler Gorrie-Stone <tgorri@essex.ac.uk>

See Also

```
copyto.gdsn
```

bigmelon-accessors 5

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
nod <- index.gdsn(e, "betas")
backup.gdsn(gds = NULL, node = nod)

closefn.gds(e)
unlink("melon.gds")</pre>
```

bigmelon-accessors

Bigmelon accessors

Description

Functions to access data nodes in gds.class objects.

Usage

```
## S4 method for signature 'gds.class'
betas(object)
## S4 method for signature 'gds.class'
methylated(object)
## S4 method for signature 'gds.class'
unmethylated(object)
## S4 method for signature 'gds.class'
pvals(object)
## S4 method for signature 'gds.class'
fData(object)
## S4 method for signature 'gds.class'
pData(object)
## S4 method for signature 'gds.class'
QCmethylated(object)
## S4 method for signature 'gds.class'
QCunmethylated(object)
## S4 method for signature 'gds.class'
QCrownames(object)
## S4 method for signature 'gds.class'
getHistory(object)
## S4 method for signature 'gds.class'
colnames(x, do.NULL=TRUE, prefix=NULL)
## S4 method for signature 'gds.class'
rownames(x, do.NULL=TRUE, prefix=NULL)
## S4 method for signature 'gds.class'
exprs(object)
## S4 method for signature 'gds.class'
fot(x)
```

6 bigmelon-accessors

Arguments

object A gds.class object.

for colnames and rownames:

x A gds.class object.

do. NULL logical. If 'FALSE' and names are 'NULL', names are created.

prefix prefix: for created names.

Details

Each function returns the data stored in the corresponding node as either a gdsn.class object or a matrix or data.frame. These are names following the conventions of the methylumi package and perform similar functions.

Each function which returns a gdsn.class object can be indexed using matrix-like '[' operations. With an optional name argument which optionally allows for row and col names to be automatically appended to returned matrix.

The QC functions (returns QCdata split into separate matrices for methylated values, unmethylated values, and probe names)

exprs returns a data.frame of beta values for all probes across all samples.

fot returns a vector corresponding to probe design (either 'I' or 'II') which is used for normalising differences between probe designs.

Value

Returns specified node representing the called accessor

Author(s)

Leonard C Schalkwyk, Ayden Saffari, Tyler Gorrie-Stone Who to contact: <tgorri@essex.ac.uk>

See Also

```
bigmelon, methylumi
```

Examples

```
data(melon)
e <- es2gds(melon,'wat_melon.gds')
betas(e)
betas(e)[,]
methylated(e)[1:5, ]
unmethylated(e)[ ,1:5]
pvals(e)[1:5, 1:5]
fData(e)
pData(e)
colnames(e)
rownames(e)
exprs(e)

closefn.gds(e)
unlink("wat_melon.gds")</pre>
```

bigmelon-normalization

Bigmelon Quantile Normalization methods.

Description

Functions used to perform quantile normalization on gds.class objects

Usage

```
## S4 method for signature 'gds.class'
dasen(mns, fudge = 100, ret2 = FALSE, node="betas",...)
dasen.gds(gds, node, mns, uns, onetwo, roco, fudge, ret2)
qn.gdsn(gds, target, newnode)
db.gdsn(gds, mns, uns)
dfsfit.gdsn(gds, targetnode, newnode, roco, onetwo)
```

Arguments

gds	A gds.class object
node	"name" of desired output gdsn.class node
mns	gdsn.class node that corresponds to "methylated" intensities.
uns	gdsn.class node that corresponds to "unmethylated" intensities.
onetwo	gdsn.class node that corresponds to probe designs (in reference to 450k and EPIC arrays) OR character string pointing to location of gdsn.class node. e.g. "fData/DESIGN" OR vector containing probe design types of length > 1 .
roco	This allows a background gradient model to be fit. This is split from data column names by default. roco=NULL disables model fitting (and speeds up processing), otherwise roco can be supplied as a character vector of strings like 'R01C01' (only 3rd and 6th characters used).
fudge	value added to total intensity to prevent denominactors close to zero when calculation betas. default = 100
ret2	if TRUE, appends the newly calculated methylated and unmethylated intensities to original gds (as specified in gds arguement). Will overwrite raw intensities.
target	Target gdsn.class node to perform normalization on. If using "*****.gds" method you do not need to specify this.
targetnode	Target gdsn.class node to perform normalization on. If using "*****.gds" method you do not need to specify this.
newnode	"name" of desired output gdsn.class node. If using "*****.gds" method you do not need to specify this.
	Additional args such as roco or onetwo.

Details

Each function performs a normalization method described within the wateRmelon package. Functions: qn.gdsn, design.qn.gdsn, db.gdsn and dfsfit.gdsn are described to allow users to create their own custom normalization methods. Otherwise calling dasen or dasen.gds e.t.c will perform the necessary operations for quantile normalization.

Each 'named' normalization method will write a temporary gds object ("temp.gds") in the current working directory and is remove it when normalization is complete. Current methods supplied by default arguments will replace the raw betas with normalized betas, but leave the methylated and unmethylated intensities unprocessed.

Value

Normalization methods return nothing but will affect the gds file and replace/add nodes if specified to

Author(s)

Tyler J Gorrie-Stone <tgorri@essex.ac.uk>

See Also

```
wateRmelon, dasen
```

Examples

```
data(melon)
e <- es2gds(melon,'wat_melon.gds')
dasen(e)
closefn.gds(e) # Close gds object
unlink('wat_melon.gds') # Delete Temp file</pre>
```

bumphunterEngine.gdsn Bumphunter using bigmelon

Description

Estimate regions for which a genomic profile deviates from its baseline value. Originally implemented to detect differentially methylated genomic regions between two populations. Functions identically to bumphunter.

Usage

bumphunterEngine.gdsn(mat, design, chr = NULL, pos, cluster = NULL, coef = 2, cutoff = NULL, pickCuto

Arguments

mat A gdsn.class object (e.g betas(gfile)

design Design matrix with rows representing samples and columns representing covari-

ates. Regression is applied to each row of mat.

chr A character vector with the chromosomes of each location.

pos A numeric vector representing the chromosomal position.

cluster The clusters of locations that are to be analyzed together. In the case of microar-

rays, the clusters are many times supplied by the manufacturer. If not available

the function clusterMaker can be used to cluster nearby locations.

coef	An integer denoting the column of the design matrix containing the covariate of interest. The hunt for bumps will be only be done for the estimate of this coefficient.
cutoff	A numeric value. Values of the estimate of the genomic profile above the cutoff or below the negative of the cutoff will be used as candidate regions. It is possible to give two separate values (upper and lower bounds). If one value is given, the lower bound is minus the value.
pickCutoff	Should bumphunter attempt to pick a cutoff using the permutation distribution?
pickCutoffQ	The quantile used for picking the cutoff using the permutation distribution.
maxGap	If cluster is not provided this maximum location gap will be used to define cluster via the clusterMaker function.
nullMethod	Method used to generate null candidate regions, must be one of 'bootstrap' or 'permutation' (defaults to 'permutation'). However, if covariates in addition to the outcome of interest are included in the design matrix (ncol(design)>2), the 'permutation' approach is not recommended. See vignette and original paper for more information.
smooth	A logical value. If TRUE the estimated profile will be smoothed with the smoother defined by smoothFunction
smoothFunction	A function to be used for smoothing the estimate of the genomic profile. Two functions are provided by the package: loessByCluster and runmedByCluster.
useWeights	A logical value. If TRUE then the standard errors of the point-wise estimates of the profile function will be used as weights in the loess smoother loessByCluster. If the runmedByCluster smoother is used this argument is ignored.
В	An integer denoting the number of resamples to use when computing null distributions. This defaults to 0. If permutations is supplied that defines the number of permutations/bootstraps and B is ignored.
permutations	is a matrix with columns providing indexes to be used to scramble the data and create a null distribution when nullMethod is set to permutations. If the bootstrap approach is used this argument is ignored. If this matrix is not supplied and B>0 then these indexes are created using the function sample.
verbose	logical value. If TRUE, it writes out some messages indicating progress. If FALSE nothing should be printed.
• • •	further arguments to be passed to the smoother functions.

Details

This function is a direct replication of the bumphunter function by Rafael A. Irizarry, Martin J. Aryee, Kasper D. Hansen, and Shan Andrews.

Author(s)

Original Function by Rafael A. Irizarry, Martin J. Aryee, Kasper D. Hansen, and Shan Andrews. Bigmelon implementation by Tyler J. Gorrie-Stone

10 combo.gds

cantaloupe

Small MethyLumi 450k data sets for testing

Description

Small MethyLumi 450k data sets intended for testing purposes only.

Usage

```
data(cantaloupe)
data(honeydew)
```

Format

cantaloupe: MethyLumiSet with assayData containing 841 features, 3 samples. honeydew: Methy-LumiSet with assayData containing 841 features, 4 samples.

Value

Loads data into R

combo.gds

Combine two different gds objects.

Description

Combines the shared gdsn.class nodes between two gds objects depending on primary gds.object dimensions.

Usage

```
combo.gds(file, primary, secondary)
```

Arguments

file Name of the new gds file to be created.

primary A gds.class object. secondary A gds.class object.

Details

-EXPERIMENTAL- Will crudely combine shared nodes between primary and secondary based on the dimensions / rownames of the primary node. NAs will be coerced where probes are missing from secondary gds.

Will only look for nodes with the names "betas", "methylated", "unmethylated", "pvals" and "NBeads".

Value

a new gds object that has both files within it

dasenrank 11

Note

Will lose information relating to "pData". Therefore we recommend compiling separate pData object manually and adding combined pData post-function

Author(s)

Tyler Gorrie-Stone <tgorri@essex.ac.uk>

Examples

```
data(melon)
a <- es2gds(melon[,1:6], "primary.gds")
b <- es2gds(melon[,7:12], "secondary.gds")

ab <- combo.gds("combo.gds", primary = a, secondary = b)

closefn.gds(a)
unlink("primary.gds")
closefn.gds(b)
unlink("secondary.gds")
closefn.gds(ab)
unlink("combo.gds")</pre>
```

dasenrank

Dasen Quantile Normalization by storing ranks

Description

Performs 'dasen' normalization for .gds format objects while storing the ranked methylated/unmethylated intensities until they are needed down stream.

This will eliminate the secondary re-sorting required by quantile normalisation as it is perfomed down-stream - either by using computebeta.gds or manually with '['

Usage

```
dasenrank(gds, mns, uns, onetwo, roco, calcbeta = NULL, perc = 1)
computebeta.gds(gds, new.node, mns, uns, fudge)
```

Arguments

gds	gds.class object which contains methylated and unmethylated intensities. The function will write two(four) nodes to this object called 'mnsrank' and 'unsrank' which contain the ranks of the given nodes.
mns	gdsn.class object OR character string that refers to location in gds that relates to the (raw) methylated intensities.
uns	gdsn.class object OR character string that refers to location in gds that relates to the (raw) unmethylated intensities.
onetwo	gdsn.class object OR character string that refers to location in gds that contains information relating to probe design OR vector of length equal to the number of rows in the array that contains 'I' and 'II' in accordance to Illumina Human-Methylation micro-array design.

12 es2gds

roco Sentrix (R0#C0#) position of all samples.

calcbeta Default = NULL, if supplied with a string, a new gdsn.node will be made with

supplied string, which will contain the calculated betas.

perc A number between 0 and 1 that relates to the given proportion of columns that

are used to normalise the data. Default is set to 1, but incase there are lots of samples to normalise this number can be reduce to increase speed of code.

Character string depicting name of new betas node in given gds object.

fudge Arbitrary value to offset low intensities

Details

new.node

calcbeta is a known bottle-neck for this code! Also function is highly experimental.

Value

Nothing is returned to the R environment, however the supplied gds will have 4 or 5 gdsn.nodes added. These are: 'mnsrank', 'unsrank', 'isnamnsrank' (hidden), 'isnaunsrank' (hidden) and calcheta if supplied. 'mnsrank' and 'unsrank' have been given some attributes - which contain the calculated quantiles from getquantilesandranks.

Author(s)

Tyler J. Gorrie-Stone - tgorri at essex.ac.uk

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
#dasenrank(gds = e)
closefn.gds(e)
unlink("melon.gds")</pre>
```

es2gds

Coersion method for MethyLumiSet, RGChannelSet or MethylSet to CoreArray Genomic Data Structure (GDS) data file

Description

The es2gds function takes a MethyLumiSet, RGChannelSet or MethylSet data object and converts it into a CoreArray Genomic Data Structure (GDS) data file (via the gdsfmt package), returning this as a gds.class object for use with bigmelon.

Usage

```
es2gds(m, file, qc = TRUE)
```

Arguments

m	A MethyLumiSet, RGChannelSet or MethylSet object
file	A character string specifying the name of the .gds file to write to.
qc	When set to true (default), data from control probes included.

estimateCellCounts 13

Value

A gds.class object, which points to the newly created .gds file.

Author(s)

Leonard C Schalkwyk, Ayden Saffari, Tyler Gorrie-Stone Who to contact: <tgorri@essex.ac.uk>

See Also

```
app2gds, iadd.
```

Examples

```
#load example dataset
data(melon)
#convert to gds
e <- es2gds(melon,'melon.gds')
closefn.gds(e)
unlink('melon.gds')</pre>
```

estimateCellCounts

Cell Proportion Estimation using bigmelon

Description

Estimates relative proprotion of pure cell types within a sample, identical to estimateCellCounts. Currently, only a reference data-set exists for 450k arrays. As a result, if performed on EPIC data, function will convert gds to 450k array dimensions (this will not be memory efficient).

Usage

```
estimateCellCounts.gds(
   gdPlatform = c("450k", "EPIC", "27k"),
   mn = NULL,
   un = NULL,
   bn = NULL,
    perc = 1,
    compositeCellType = "Blood",
   probeSelect = "auto",
    cellTypes = c("CD8T", "CD4T", "NK", "Bcell", "Mono", "Gran"),
    referencePlatform = c("IlluminaHumanMethylation450k",
        "IlluminaHumanMethylationEPIC",
        "IlluminaHumanMethylation27k"),
    returnAll = FALSE,
   meanPlot = FALSE,
    verbose=TRUE,
    ...)
```

14 estimateCellCounts

Arguments

gds An object of class gds.class, which contains (un)normalised methylated and un-

methylated intensities

gdPlatform Which micro-array platform was used to analysed samples

mn 'Name' of gdsn node within gds that contains methylated intensities, if NULL

it will default to 'methylated' or 'mnsrank' if dasenrank was used prior

un 'Name' of gdsn node within gds that contains unmethylated intensities, if NULL

it will default to 'unmethylated' or 'unsrank' if dasenrank was used prior

bn 'Name' of gdsn node within gds that contains un(normalised) beta intensities. If

NULL - function will default to 'betas'.

perc Percentage of query-samples to use to normalise reference dataset. This should

be 1 unless using a very large data-set which will allow for an increase in per-

formance

compositeCellType

Which composite cell type is being deconvoluted. Should be either "Blood",

"CordBlood", or "DLPFC"

probeSelect How should probes be selected to distinguish cell types? Options include "both",

which selects an equal number (50) of probes (with F-stat p-value < 1E-8) with the greatest magnitude of effect from the hyper- and hypo-methylated sides, and "any", which selects the 100 probes (with F-stat p-value < 1E-8) with the greatest magnitude of difference regardless of direction of effect. Default input "auto" will use "any" for cord blood and "both" otherwise, in line with previous versions of this function and/or our recommendations. Please see the references

for more details.

cellTypes Which cell types, from the reference object, should be we use for the deconvo-

lution? See details.

referencePlatform

The platform for the reference dataset; if the input rgSet belongs to another

platform, it will be converted using convertArray.

returnAll Should the composition table and the normalized user supplied data be return?

verbose Should the function be verbose?

meanPlot Whether to plots the average DNA methylation across the cell-type discrimating

probes within the mixed and sorted samples.

... Other arguments, i.e arguments passed to plots

Details

See estimateCellCounts for more information regarding the exact details. estimateCellCounts.gds differs slightly, as it will impose the quantiles of type I and II probes onto the reference Dataset rather than normalising the two together. This is 1) More memory efficient and 2) Faster - due to not having to normalise out a very small effect the other 60 samples from the reference set will have on the remaining quantiles.

Optionally, a proportion of samples can be used to derive quantiles when there are more than 1000 samples in a dataset, this will further increase performance of the code at a cost of precision.

finalreport2gds 15

finalreport2gds

Read finalreport files and convert to genomic data structure files

Description

Function to easily load Illumina methylation data into a genomic data structure (GDS) file.

Usage

```
finalreport2gds(finalreport, gds, ...)
```

Arguments

finalreport A filename of the text file exported from GenomeStudio

gds The filename for the gds file to be created
... Additional arguments passed to methylumiR

Details

Creates a .gds file.

Value

A gds.class object

Author(s)

Tyler Gorrie-Stone

Examples

```
finalreport <- "finalreport.txt"
## Not run: finalreport2gds(finalreport, gds="finalreport.gds")</pre>
```

gds2mlumi

Convert Genomic Data Structure file to Methylumiset or Methylset object.

Description

Convert a Genomic Data Structure object back into a methylumi object, with subsetting features.

Usage

```
gds2mlumi(gds, i, j)
gds2mset(gds, i, j, anno)
```

16 GEOtoGDS

Arguments

gds	a gds object
i	Index of rows
j	Index of Columns

anno If NULL, function will attempt to guess the annotation to be used. Otherwise

can be specified with either "27k", "450k", "epic" or "unknown".

Value

A methylumi object

Author(s)

Tyler Gorrie-Stone

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
gds2mlumi(e)
closefn.gds(e)
unlink("melon.gds")</pre>
```

GEOtoGDS

Download GEO data and pipe into a gdsfmt object

Description

Uses GEOquery to download a GSE Accession into the current working directory, only works for GSE's with raw idat files.

Usage

```
geotogds(geo, gds, method = "wget", keepidat = F, keeptar = F, ...)
```

Arguments

geo	A GEO Accession number. "GSE#######" or a tarball 'GSE#####.tar.gz'
gds	A character string specifying the name of the .gds file to write to.
method	String to indicate what method to download data from GEO off. Default is 'wget'
keepidat	Logical, indicates whether or not to keep the raw idat files in the working directory after downloading - if FALSE, removed
keeptar	Logical, indicates whether or not to keep the downloaded tarball in the working directory - if FALSE, removed.
	Additional Arguments to pass to other functions (if any)

Value

A gds.class object, which points to the newly created .gds file.

getquantilesandranks 17

Author(s)

Tyler Gorrie-Stone Who to contact: <tgorri@essex.ac.uk>

Examples

```
#load example dataset
# gfile <- geotogds("GSE******", "Nameoffile.gds")
# Will not work if gds has no idats submitted. May also fail if idats
# are not deposited in a way readily readable by readEPIC().
# closefn.gds(gfile)</pre>
```

getquantilesandranks Compute the quantiles and ranks for a given gdsn.node

Description

Used inside dasenrank to generate the quantiles for both type 'I' and type 'II' probes to normalise DNA methylation data using bigmelon.

Usage

```
getquantilesandranks(gds, node, onetwo, rank.node = NULL, perc = 1)
```

Arguments

gds A gds.class object

node A gdsn.class object, or a character string that refers to a node within supplied

gds.

onetwo gdsn.class object OR character string that refers to location in gds that contains

information relating to probe design OR vector of length equal to the number of rows in the array that contains 'I' and 'II' in accordance to Illumina Human-

Methylation micro-array design. Can be obtained with fot(gds)

rank.node Default = NULL. If supplied with character string, function will calculate the

ranks of given node and store them in gds. Additionally, the computed quantiles will now instead be attributed to rank.node which can be accessed with

get.attr.gdsn

perc A number between 0 and 1 that relates to the given proportion of columns that

are used to normalise the data. Default is set to 1, but in cases where there many of samples to normalise this number can be reduced to increase speed of code.

Details

Used in dasenrank, can be used externally for testing purposes.

Value

If rank.node is NULL. A list containing quantiles, intervals and supplied probe design will be returned. If rank.node was supplied, nothing will be returned. Instead a new node will be created in given gds that has the otherwise returned list attached as an attribute. Which can be accessed with get.attr.gdsn

18 iadd

Author(s)

Tyler J. Gorrie-Stone Who to contact: <tgorri@essex.ac.uk>

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
output <- getquantilesandranks(gds = e, 'methylated', onetwo = fot(e), perc = 1, rank.node = NULL)
str(output)
# with-out put.
getquantilesandranks(gds = e, 'methylated', onetwo = fot(e), perc = 1, rank.node = 'mnsrank')
closefn.gds(e)
unlink("melon.gds")</pre>
```

iadd

Add data from IDAT files for a single barcode to a gds file

Description

Add data from IDAT files for a single barcode to a gds file. or Add data from many IDAT files from a single directory to a gds file.

Usage

```
iadd(bar, gds, n = TRUE, ...)
iadd2(path, gds, chunksize = NULL, ...)
```

Arguments

bar	The barcode for an IDAT file Or the file path of the file containing red or green channel intensities for that barcode (this will automatically locate and import both files regardless of which one you provide)
path	The file path where (multiple) IDAT files exist. Iadd2 will process every idat within the specified directory.
gds	Either: A gds.class object Or: A character string specifying the name of an existing .gds file to write to. Or: A character string specifying the name of a new .gds file to write to
chunksize	If NULL, iadd2 will read in all barcodes in one go. Or if supplied with a numeric value, iadd2 will read in that number of idat files in batches
n	Logical, whether or not bead-counts are extracted from idat files.
	Additional Arguments passed to methylumIDATepic.

Value

returns a gds.class object, which points to the appended .gds file.

Author(s)

Tyler Gorrie-Stone, Leonard C Schalkwyk, Ayden Saffari. Who to contact: <tgorri@essex.ac.uk>

pfilter.gds 19

See Also

```
es2gds, app2gds.
```

Examples

```
if(require('minfiData')){
bd <- system.file('extdata', package='minfiData')
gfile <- iadd2(file.path(bd, '5723646052'), gds = 'melon.gds')
closefn.gds(gfile)
unlink('melon.gds')
}</pre>
```

pfilter.gds

Basic data filtering for Illumina methylation data in gds objects

Description

The pfilter function filters data sets based on bead count and detection p-values. The user can set their own thresholds or use the default pfilter settings. This specific function will take a Genomic Data Structure (GDS) file as input and perform pfilter similar to how pfilter in wateRmelon is performed.

Usage

```
## S4 method for signature 'gds.class'
pfilter(mn, perCount = NULL, pnthresh = NULL,
perc = NULL, pthresh = NULL)
```

Arguments

mn a gds object OR node corresponding to methylated intensities

perCount remove sites having this percentage of samples with a beadcount <3, default = 5

pnthresh cut off for detection p-value, default = 0.05

perc remove sample having this percentage of sites with a detection p-value greater than pnthresh, default = 1

pthresh remove sites having this percentage of sample with a detection p-value greater

than pnthresh, default = 1

Value

See pfilter. If using pfilter.gds, function will return a list of two elements. Both logical vectors with length(nrow) and length(ncol), which can be used for subsetting. Otherwise will be used to subset data directly.

Author(s)

Tyler Gorrie-Stone, Original (wateRmelon) Function by Ruth Pidsley

See Also

```
pfilter
```

20 prcomp.gds.class

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
pfilter(e)
closefn.gds(e)
unlink("melon.gds")</pre>
```

prcomp.gds.class

Principal Component Analysis for high-dimensional data

Description

Performs principal components analysis on the given gds object and returns the results as an object of class "prcomp".

Usage

```
## S3 method for class 'gds.class'
prcomp(x, node.name, center = FALSE, scale. = FALSE,
rank. = NULL, retx = FALSE, tol = NULL, perc = 0.01,
npcs = NULL, parallel = NULL, method = c('quick', 'sorted'), verbose = FALSE, ...)
```

Arguments

Χ

	8
node.name	Name of the gdsn.class node to learn principal components from
center	Logical value indicating whether variables should be shifted to be zero centered.
scale.	Logical value indicating whether the variables should be scaled to have unit variance
tol	a value indicating the magnitude below which components should be omitted.
rank.	Old. (Still functional) Number of principal components to be returned
retx	a logical value indicating whether the rotated variables should be returned.
perc	Percentage of data to be used.
npcs	Number of principal components to be returned
parallel	Can supply either a cluster object (made from makeCluster) or a integer depicting number of cores to be used. This is only used if method="sorted".
method	Indicates what method to use out of "quick" and "sorted". "quick" stochastically

Indicates what method to use out of "quick" and "sorted". "quick" stochastically selects number of rows according to perc. And the supplies them to svd. "sorted"

determines the interquartile range for each row then selects the top percentage (according to perc) of probes with the largest interquartile range and supplies

selected rows to svd.

A gds.class object.

verbose A logical value indicating whether message outputs are displayed.

... arguments passed to or from other methods. If "x" is a formula one might specify

"scale." or "tol".

pwod.gdsn 21

Details

The calculation is done by a singular value decomposition of the (centered and possibly scaled) data matrix, not by using "eigen" on the covariance matrix. This is generally the preferred method for numerical accuracy. The "print" method for these objects prints the results in a nice format and the "plot" method produces a scree plot.

Value

An object of prcomp class

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
prcomp(e, node.name="betas", perc=0.01, method='quick')
closefn.gds(e)
unlink("melon.gds")</pre>
```

pwod.gdsn

Probe-Wise Outlier Detection

Description

'P'robe-'W'ise 'O'utlier 'D'etection via interquartile ranges

Usage

```
pwod.gdsn(node, mul = 4)
```

Arguments

node gdsn.class object containing array to be filtered

Mumber of interquartile ranges used to determine outlying probes. Default is 4

to ensure only very obvious outliers are removed.

Details

Detects outlying probes across arrays in methylumi and minfi objects. Outliers are probable low MAF/SNP heterozygotes.

Value

Nothing returned. Supplied gds object will have new node with outlier probes coerced to NAs.

Author(s)

Tyler Gorrie-Stone

See Also

pwod

22 redirect.gds

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds")
pwod(e)
closefn.gds(e)
unlink("melon.gds")</pre>
```

redirect.gds

Change the location of file 'paths' for row and column names.

Description

Quickly change contents of gdsn.class node "paths".

Usage

```
redirect.gds(gds, rownames, colnames)
```

Arguments

gds gds. class object containing node named "paths".

rownames Character string that points to named part of supplied gds that corresponds to

rownames. e.g. "fData/Target_ID". Default = "fData/Probe_ID"

colnames Character string that points to names part of supplied gds that corresponds to

colnames. e.g. "pData/Sample_ID". Default = "pData/barcode"

Details

Function is important within many functions and can lead to errors if row and column names are not correctly specified. By default, es2gds can recognize whether a methylumiset object was read in through readEPIC or methylumiR and will set the row and col names paths correctly. Will fail noisily if given a pathway that does not exist.

Value

Changes the gdsn.class object named "paths" to supplied rownames and colnames within supplied gds.class object.

Author(s)

```
Tyler J. Gorrie-Stone Who to contact: <tgorri@essex.ac.uk>
```

See Also

```
add.gdsn, app2gds, es2gds
```

wm-port 23

Examples

```
data(melon)
e <- es2gds(melon, "melon.gds") # Create gds object
redirect.gds(e, rownames = "fData/TargetID", colnames = "pData/sampleID")
# Deleting Temp files
closefn.gds(e)
unlink("melon.gds")</pre>
```

wm-port

Functions ported from wateRmelon

Description

methods for extraenous functions from wateRmelon see respective manual pages.

Usage

```
## S4 method for signature 'gdsn.class,gdsn.class'
qual(norm, raw)
## S4 method for signature 'gds.class'
predictSex(x, x.probes=NULL, pc=2, plot=TRUE, irlba=TRUE, center=FALSE, scale.=FALSE)
## S4 method for signature 'gdsn.class'
predictSex(x, x.probes=NULL, pc=2, plot=TRUE, irlba=TRUE, center=FALSE, scale.=FALSE)
```

Arguments

norm	normalized node (gdsn.class)
raw	raw node (gdsn.class)
X	gdsclass object or node corresponding to betas
x.probes	Default is NULL, is required to be supplied in bigmelon. logical or numeric vector containing indicies of X chromosome probes
рс	The principal component to guess sex across (usually the 2nd one in most cases)
plot	Logical, indicated whether or not to plot the prediction
irlba	Logical, indicate whether or not to use the faster method to generate principal components
center	Logical, indicate whether or not to center data around 0
scale.	Logical, indicate whether or not to scale data prior to prcomp

Details

Filler Text

Value

Returns expected output of functions from wateRmelon

See Also

wateRmelon

Index

*Topic backup	danen.gds(bigmelon-normalization),7
backup.gdsn,4	danes,gds.class-method
*Topic combo	(bigmelon-normalization), 7
combo.gds, 10	danes.gds(bigmelon-normalization),7
*Topic datasets	danet,gds.class-method
cantaloupe, 10	(bigmelon-normalization), 7
*Topic package	danet.gds(bigmelon-normalization),7
bigmelon-package, 2	dasen, 3 , 8
*Topic wm-port	dasen,gds.class-method
wm-port, 23	(bigmelon-normalization), 7
'[.gds.class' (bigmelon-accessors), 5	dasen.gds(bigmelon-normalization),7
'[.gdsn.class' (bigmelon-accessors), 5	dasenrank, 11, 14, 17
.getEstimate2 (bumphunterEngine.gdsn), 8	daten1,gds.class-method
.sortvector (getquantilesandranks), 17	(bigmelon-normalization), 7
,,	daten1.gds (bigmelon-normalization), 7
add.gdsn, 22	daten2,gds.class-method
app2gds, 3, 13, 19, 22	(bigmelon-normalization), 7
	daten2.gds (bigmelon-normalization), 7
backup.gdsn, 4	db.gdsn(bigmelon-normalization), 7
betaqn,gds.class-method	dfsfit.gdsn (bigmelon-normalization), 7
(bigmelon-normalization), 7	dmrse, gds.class-method (wm-port), 23
betas,gds.class-method	dmrse, gdsn.class-method (wm-port), 23
(bigmelon-accessors), 5	dmrse_col,gds.class-method(wm-port), 23
bigmelon, 6	dmrse_col,gdsn.class-method(wm-port),
bigmelon (bigmelon-package), 2	23
bigmelon-accessors, 5	dmrse_row,gds.class-method(wm-port), 23
bigmelon-normalization, 7	<pre>dmrse_row,gdsn.class-method(wm-port),</pre>
bigmelon-package, 2	23
bumphunter, 8, 9	
<pre>bumphunterEngine.gdsn, 8</pre>	es2gds, <i>3</i> , 12, <i>19</i> , 22
	estimateCellCounts, 13, 13, 14
cantaloupe, 10	exprs,gds.class-method
clusterMaker, 8, 9	(bigmelon-accessors), 5
colnames,gds.class-method	
(bigmelon-accessors), 5	fData,gds.class-method
colnames,gdsn.class-method	(bigmelon-accessors), 5
(bigmelon-accessors), 5	finalreport2gds, 15
combo.gds, 10	fot (bigmelon-accessors), 5
computebeta.gds (dasenrank), 11	fot,gds.class-method
convertArray, 14	(bigmelon-accessors), 5
copyto.gdsn, 4	
	gds2mlumi, 15
danen,gds.class-method	gds2mset(gds2mlumi), 15
(bigmelon-normalization), 7	gdsfmt, 3

INDEX 25

<pre>gdsn.class, 7 genki,gds.class-method(wm-port), 23</pre>	<pre>pvals,gds.class-method (bigmelon-accessors), 5</pre>
genki, gdsn.class-method (wm-port), 23	pwod, 21
GEOtoGDS, 16	pwod, gds.class(pwod.gdsn), 21
geotogds (GEOtoGDS), 16	pwod, gdsn.class (pwod.gdsn), 21
get.attr.gdsn, 17	pwod.gdsn, 21
getfolder.gdsn, 4	phod. gash, 21
getHistory,gds.class-method	QCmethylated (bigmelon-accessors), 5
(bigmelon-accessors), 5	QCmethylated, gds.class-method
getpheno (GEOtoGDS), 16	(bigmelon-accessors), 5
getquantiles (estimateCellCounts), 13	QCrownames (bigmelon-accessors), 5
getquantilesandranks, 17	QCrownames, gds. class-method
getquarreffesariur ariks, 17	(bigmelon-accessors), 5
honeydew (cantaloupe), 10	QCunmethylated (bigmelon-accessors), 5
	QCunmethylated, gds.class-method
iadd, 3, 13, 18	(bigmelon-accessors), 5
iadd2(iadd), 18	qn.gdsn(bigmelon-normalization), 7
	qual,gdsn.class,gdsn.class-method
methylated,gds.class-method	(wm-port), 23
(bigmelon-accessors), 5	(wiii poi c), 23
methylumi, 3, 6	readEPIC, 3
methylumIDATepic, 18	redirect.gds, 22
methylumiR, 15	rownames,gds.class-method
	(bigmelon-accessors), 5
nanes,gds.class-method	rownames, gdsn.class-method
(bigmelon-normalization), 7	(bigmelon-accessors), 5
nanes.gds (bigmelon-normalization), 7	(Bigineton decessors), s
nanet,gds.class-method	seabi,gds.class-method(wm-port), 23
(bigmelon-normalization), 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
nanet.gds (bigmelon-normalization), 7	unmethylated,gds.class-method
nasen,gds.class-method	(bigmelon-accessors), 5
(bigmelon-normalization), 7	
nasen.gds (bigmelon-normalization), 7	wateRmelon, 3 , 8 , 23
naten,gds.class-method	wm-port, 23
(bigmelon-normalization), 7	
naten.gds (bigmelon-normalization), 7	
nData ada alasa-mathad	
pData, gds. class-method	
(bigmelon-accessors), 5	
pfilter, 19 pfilter, gds. class (pfilter.gds), 19	
pfilter, gds.class (pfilter.gds), 19 pfilter, gds.class-method (pfilter.gds),	
19	
pfilter.gds, 19	
prcomp, gds.class(prcomp.gds.class), 20	
prcomp, gds.class-method	
(prcomp.gds.class), 20	
prcomp.gds (prcomp.gds.class), 20	
prcomp.gds.class, 20	
predictSex (wm-port), 23	
predictSex, gds.class-method (wm-port),	
23	
predictSex,gdsn.class-method(wm-port),	
23	