Package 'RRHO'

April 15, 2020
Type PackageTitle Inference on agreement between ordered lists
Version 1.26.0
Date 2014-06-26
Author Jonathan Rosenblatt and Jason Stein
Maintainer Jonathan Rosenblatt john.ros.work@gmail.com
Description
The package is aimed at inference on the amount of agreement in two sorted lists using the Rank-Rank Hypergeometric Overlap test.
License GPL-2
Depends R (>= 2.10), grid
Imports VennDiagram
Suggests lattice
Enhances
biocViews Genetics, SequenceMatching, Microarray, Transcription
git_url https://git.bioconductor.org/packages/RRHO
git_branch RELEASE_3_10
git_last_commit 2313afd
git_last_commit_date 2019-10-29
Date/Publication 2020-04-14
R topics documented:
RRHO-package 2
HNP 2
pvalRRHO 3
RRHO 4
RRHOComparison 6
Index 8

RRHO-package Test overlap using the Rank-Rank Hypergeometric test

Description

The package is aimed at inference on the amount of agreement in two sorted lists using the RankRank Hypergeometric Overlap test.

Details

Package:	RRHO
Type:	Package
Version:	0.3
Date:	$2013-06-21$
License:	GPL-2

See RRHO to get started.

Author(s)

Jonathan Rosenblatt and Jason Stein Maintainer: Jonathan Rosenblatt john.ros.work@gmail.com

See Also

RRHO, RRHOComparison

HNP RRHO comparison data sets.

Description

RRHO comparison data sets. See references for details.

Usage

data(lists)

Format

Three data frames: HNP, My and Sestan. Each is a data.frame with gene identifiers and sorting values so that they can be used as inputes to RRHOComparison.

References

Stein JL*, de la Torre-Ubieta L*, Tian Y, Parikshak NN, Hernandez IA, Marchetto MC, Baker DK, Lu D, Lowe JK, Wexler EM, Muotri AR, Gage FH, Kosik KS, Geschwind DH. "A quantitative framework to evaluate modeling of cortical development by neural stem cells." Manuscript in press at Neuron. $\left({ }^{*}\right)$ Authors contributed equally to this work.

Examples

```
data(lists)
str(HNP) ; str(Sestan); str(My)
```

```
pvalRRHO Compute the significance of the overlap between two lists
```


Description

Computes the significance of the agreements between lists as returned by RRHO using resampling.

Usage

pvalRRHO(RRHO.obj, replications, stepsize=RRHO.obj\$stepsize, FUN= max)

Arguments

RRHO.obj The output object of the RRHO function.
replications The number of samples to be taken from the distribution of the aggregated test statistic.
stepsize Controls the resolution of the test: how many items between any two overlap tests (i.e., netween any two i-s and two j-s.)
FUN The function aggregating infomation from the whole overlap matrix into one summary statistic. Typically the \min pvalue, or \max on $-\log ($ pval $)$ scale.

Details

The distribution of $F U N(-\log (p v a l))$ is computed using resampling.
The aggregating function will typically be the max function, corresponding to the maximal - \log ($p v a l u e$), i.e., the most significant agreement over all sublists.

The distribution is computed by resampling pairs of null sequences, computing the significances of all the overlaps as done in the reference, applying the aggregating function supplied by the user, and returning the permutation based significance.

Value

pval	The FWER corrected significance of observed aggregated pvalue.
FUN. ecdf	The simulated sampling distribution of the aggregated pvalues.
FUN	The matrix aggregation function used. typicall max for minimal p-value.
n.items	Length of lists.
stepsize	See RRHO
replications	The number of simulation replications.
call	The function call.

Note

Might take a long time to run. Depending on the number of replications, the item (gene) count and the stepsize.

Also note that the significance returned is a conservative value (by a constant of $1 /$ replications).

Author(s)

Jonathan Rosenblatt

See Also

RRHO

Examples

```
list.length <- 100
list.names <- paste('Gene',1:list.length, sep='')
gene.list1<- data.frame(list.names, sample(list.length))
gene.list2<- data.frame(list.names, sample(list.length))
RRHO.example <- RRHO(gene.list1, gene.list2, alternative='enrichment')
pval.testing <- pvalRRHO(RRHO.example,50)
```

RRHO Rank-Rank Hypergeometric Overlap Test

Description

The function tests for significant overlap between two sorted lists using the method in the reference.

Usage

```
RRHO(
list1, list2,
stepsize = defaultStepSize(list1, list2),
labels,
alternative,
plots = FALSE,
outputdir = NULL,
BY = FALSE,
log10.ind=FALSE)
```


Arguments

list1	data.frame. First column is the element (possibly gene) identifier, and the second is its value on which to sort. For differential gene expression, values are often -log10(P-value) $*$ sign(effect).
list2	data.frame. Same as list1.
stepsize	Controls the resolution of the test: how many items between any two overlap tests.
labels	Character vector with two elements: the labels of the two lists.
alternative	Either "enrichment" for a one sided test, or "two.sided" for a two sided test. See Details section.
plots	Logical. Should output plots be returned?
outputdir	Path name where plots ae returned.
BY	Logical. Should Benjamini-Yekutieli FDR corrected pvalues be computed? log10.ind
Logical. Should pvalues be reported and plotted in -log10 scale and not -log	
scale?	

Details

Following the method in the reference, the function computes the number of overlapping elements in the first $i *$ stepsize and $j *$ stepsize elements of each list, and return the observed significance of this overlap using a hypergeometric test (see fisher. test). The output is returned as a list of matrices including: the overlap in the first $i *$ stepsize, $j *$ stepsize elements and the significance of this overlap.
If plots=TRUE then plots of these matrices are stored in .jpg format. In the case of alternative='two. sided' the pvalue plots are signed, just like in [1], thus distinguishing between over and under enrichment.

Value

hypermat \quad Matrix of $-\log ($ pvals $)$ of the test for the first i, j elements of the lists.
hypermat.counts
Counts of the number of agreements in the first i, j elements of the lists.
hypermat. by An optional output of the B-Y corrected p-values of hypermat
hypermat.signs Matrix of the type of deviation from the null. Negative for underenrichment and positive for overenrichment.

Notes

By default, pvalues are reported in (minus) the natural \log scale and not in (minus) $\log 10$ scale. This behaviour is governed by $\log 10$.ind.

The p-values of the two-sided hypothesis test differ from those in reference [1]. This is because the two-sided p-values suggested in [1], are based on taking either the upper or lower tail of the distribution without appropriately using both tails. This method does not correctly control the type I error rate. In the implementation here, for a two-sided test we sum the probabilities from both tails of the hypergeometric distribution. See the package vignette for a small simulation.

Author(s)

Jonathan Rosenblatt and Jason Stein

References

[1] Plaisier, Seema B., Richard Taschereau, Justin A. Wong, and Thomas G. Graeber. "Rankrank Hypergeometric Overlap: Identification of Statistically Significant Overlap Between Geneexpression Signatures." Nucleic Acids Research 38, no. 17(September 1, 2010)
[2] Benjamini, Y., and D. Yekutieli. 2001. "The Control of the False Discovery Rate in Multiple Testing Under Dependency." ANNALS OF STATISTICS 29 (4): 1165-1188.
[3] Stein JL(*), de la Torre-Ubieta L(*), Tian Y, Parikshak NN, Hernandez IA, Marchetto MC, Baker DK, Lu D, Lowe JK, Wexler EM, Muotri AR, Gage FH, Kosik KS, Geschwind DH. "A quantitative framework to evaluate modeling of cortical development by neural stem cells." Manuscript in press at Neuron. (*) Authors contributed equally to this work.

See Also

Examples

```
list.length <- 100
list.names <- paste('Gene',1:list.length, sep='')
gene.list1<- data.frame(list.names, sample(100))
gene.list2<- data.frame(list.names, sample(100))
    # Enrichment alternative
RRHO.example <- RRHO(gene.list1, gene.list2, alternative='enrichment')
image(RRHO.example$hypermat)
    # Two sided alternative
    RRHO.example <- RRHO(gene.list1, gene.list2, alternative='two.sided')
image(RRHO.example$hypermat)
```

RRHOComparison
Compares two RRHO maps to a third

Description

Comparing two RRHO maps where one of the lists is shared between the two maps as in \{RRHO map 1: list1 vs list3\} vs \{RRHO map 2: list2 vs list3\}.

Usage

```
RRHOComparison(list1, list2, list3,
    stepsize, plots = FALSE,
    labels, outputdir = NULL,
    log10.ind)
```


Arguments

list1 A data.frame from experiment 1 with two columns, column 1 is the 'Gene Identifier', column 2 is the signed ranking value (e.g. signed $-\log 10$ of p -value, or fold change).
list2 Same as list1.
list3 Same as list1.
stepsize Integer indicating how many genes to increase by in each algorithm iteration.
labels Character vector carrying the labels for the outputted plots.
plots Logical. Should comparisons be plotted?
outputdir Plot destination directory.
$\log 10$. ind Logical. Should pvalues be reported and plotted in $-\log 10$ scale and not $-\log$ scale?

Details

The difference in \{overlap between list1 and list3\} compared to the \{overlap between list2 and list3\}. This is useful for determining if there is a statistically significant difference between two RRHO maps. In other words, this is useful for determining if the overlap between list1 and list 3 is statistically different between the overlap between list2 and list3.

RRHO Difference maps are produced by calculating for each pixel the normal approximation of difference in \log odds ratio and standard error of overlap between the two RRHO maps. This Z score is then converted to a P-value and corrected for multiple comparisons across pixels [3].
The function will return a RRHO of the significance of overlap between list1 and list3 and list2 and list3. A third RRHO gives the significance of the difference between these two overlap maps.
Note that by default all pvalues are outputted in $-\log$ scale. This can be changed with the $\log 10$.ind argument.

Value

A oject including:
hypermat1 Pvalues of comparing list1 to list3.
hypermat2 Pvalues of comparing list2 to list3.
Pdiff The pvalue of the test for a difference in difference between lists 1-3 and 2-3.
Pdiff.by Pvalues, corrected for the search over all of the list using Benjamini-Yekutieli.

Author(s)

Jason Stein and Jonathan Rosenblatt

References

[1] Plaisier, Seema B., Richard Taschereau, Justin A. Wong, and Thomas G. Graeber. "Rankrank Hypergeometric Overlap: Identification of Statistically Significant Overlap between GeneExpression Signatures." Nucleic Acids Research 38, no. 17 (September 1, 2010): e169-e169.
[2] Benjamini, Y., and D. Yekutieli. "The Control of the False Discovery Rate in Multiple Testing under Dependency." ANNALS OF STATISTICS 29, no. 4 (2001): 1165-88.
[3] Stein JL*, de la Torre-Ubieta L*, Tian Y, Parikshak NN, Hernandez IA, Marchetto MC, Baker DK, Lu D, Lowe JK, Wexler EM, Muotri AR, Gage FH, Kosik KS, Geschwind DH. "A quantitative framework to evaluate modeling of cortical development by neural stem cells." Manuscript in press at Neuron. (*) Authors contributed equally to this work.

See Also

RRHO

Examples

size<- 500
list1<- data.frame(GeneIdentifier=paste('gen',1:size, sep=''),
RankingVal=-log(runif(size)))
list2<- data.frame(GeneIdentifier=paste('gen',1:size, sep=''),
RankingVal=-log(runif(size)))
list3<- data.frame(GeneIdentifier=paste('gen',1:size, sep=''),
RankingVal=-log(runif(size)))
(temp.dir<- tempdir())
RRHOComparison(list1,list2,list3,
stepsize=10, labels=c("list1","list2","list3"), plots=TRUE, outputdir=temp.dir, log10.ind=FALSE)

Index

*Topic datasets

HNP, 2
*Topic htest
pvalRRHO, 3
RRHO, 4
RRHO-package, 2
fisher.test, 5
HNP, 2
My (HNP), 2
pvalRRHO, 3, 5
RRHO, 2-4, 4, 7
RRHO-package, 2
RRHOComparison, 2, 5, 6
Sestan (HNP), 2

