Package 'M3C'

April 15, 2020

Title Monte Carlo Reference-based Consensus Clustering

Version 1.8.0

Author Christopher John, David Watson

Maintainer Christopher John <chris.r.john86@gmail.com>

Description M3C is a consensus clustering algorithm that uses a Monte Carlo simulation to eliminate overestimation of K and can reject the null hypothesis K=1.

Depends R (>= 3.5.0)

License AGPL-3

Encoding UTF-8

LazyData true

Imports ggplot2, Matrix, doSNOW, NMF, RColorBrewer, cluster, parallel, foreach, doParallel, matrixcalc, dendextend, sigclust, Rtsne, survival, corpcor, umap

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 6.1.1

biocViews Clustering, GeneExpression, Transcription, RNASeq, Sequencing, ImmunoOncology

git_url https://git.bioconductor.org/packages/M3C

git_branch RELEASE_3_10

git_last_commit 8fb541e

git_last_commit_date 2019-10-29

Date/Publication 2020-04-14

R topics documented:

clustersim											•	•								 				2
desx		•																		 				2
featurefilter .		•																		 				3
M3C																				 				4
mydata																			•	 				5
рса	•	•			•					•						•				•				6
tsne	•	•	•		•					•			•			•			•	 •	•			7
umap																				 				8

10

clustersim

Description

clustersim: A cluster simulator for testing clustering algorithms

Usage

```
clustersim(n, n2, r, K, alpha, wobble, redp = NULL, print = FALSE,
  seed = NULL)
```

Arguments

n	Numerical value: The number of samples, it must be square rootable
n2	Numerical value: The number of features
r	Numerical value: The radius to define the initial circle (use approx n/100)
К	Numerical value: How many clusters to simulate
alpha	Numerical value: How far to pull apart the clusters
wobble	Numerical value: The degree of noise to add to the sample co ordinates
redp	Numerical value: The fraction of samples to remove from one cluster
print	Logical flag: whether to print the PCA into current directory
seed	Numerical value: fixes the seed if you want to repeat results
r K alpha wobble redp print	Numerical value: The radius to define the initial circle (use approx n/100) Numerical value: How many clusters to simulate Numerical value: How far to pull apart the clusters Numerical value: The degree of noise to add to the sample co ordinates Numerical value: The fraction of samples to remove from one cluster Logical flag: whether to print the PCA into current directory

Value

A list: containing 1) matrix with simulated data in it

Examples

res <- clustersim(225, 900, 8, 4, 0.75, 0.025, redp = NULL, print = TRUE, seed=123)

desx

GBM clinical annotation data

Description

This is the clinical annotation data from the GBM dataset, it contains the class of the tumour which is one of: classical, mesenchymal, neural, proneural. It is a data frame with 2 columns and 50 rows.

Author(s)

Chris John <chris.r.john86@gmail.com>

References

Verhaak, Roel GW, et al. "Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1." Cancer cell 17.1 (2010): 98-110.

featurefilter

Description

This function is to filter features based on variance. Depending on the data different metrics will be more appropiate, simple variance is included if variance does not tend to increase with the mean. There is also the median absolute deviation which is a more robust metric than variance. The coefficient of variation (A) or its second order derivative (A2) (Kvalseth, 2017) are also included which standardise the standard deviation with respect to the mean. It is best to examine the mean-variance relationship of the data and the distribution of variance of all features when selecting a metric, for example, using the results from this function together with the qplot function from ggplot2.

Usage

```
featurefilter(mydata, percentile = 10, method = "MAD", topN = 20)
```

Arguments

mydata	Data frame: should have samples as columns and rows as features
percentile	Numerical value: the top X percent most variable features should be kept
method	Character vector: variance (var), coefficient of variation (A), second order A (A2), median absolute deviation (MAD)
topN	Numerical value: the number of most variable features to display

Value

A list, containing: 1) filtered data 2) statistics for each feature order according to the defined filtering metric

References

Kvålseth, Tarald O. "Coefficient of variation: the second-order alternative." Journal of Applied Statistics 44.3 (2017): 402-415.

Examples

filtered <- featurefilter(mydata,percentile=10)</pre>

Description

This is the M3C core function, which is a reference-based consensus clustering algorithm. The basic idea is to use a multi-core enabled Monte Carlo simulation to drive the creation of a null distribution of stability scores. The Monte Carlo simulations maintains the feature correlation structure of the input data. Then the null distribution is used to compare the reference scores with the real scores and an empirical p value is calculated for every value of K to test the null hypothesis K=1. We derive the Relative Cluster Stability Index (RCSI) as a metric for selecting K, which is based on a comparison against the reference mean. A faster alternative is included that includes a penalty term to prevent overfitting, called the Penalised Cluster Stability Index (PCSI).

Usage

```
M3C(mydata, cores = 1, iters = 100, maxK = 10, des = NULL,
ref_method = c("reverse-pca", "chol"), repsref = 100,
repsreal = 100, clusteralg = c("pam", "km", "spectral", "hc"),
distance = "euclidean", pacx1 = 0.1, pacx2 = 0.9,
printres = FALSE, printheatmaps = FALSE, showheatmaps = FALSE,
seed = NULL, removeplots = FALSE, dend = FALSE, silent = FALSE,
doanalysis = FALSE, analysistype = c("survival", "kw", "chi"),
variable = NULL, fsize = 18, method = 1, lambda = 0.1)
```

Arguments

mydata	Data frame or matrix: Contains the data, with samples as columns and rows as features
cores	Numerical value: how many cores to split the monte carlo simulation over
iters	Numerical value: how many Monte Carlo iterations to perform (default: 100, recommended: 5-200)
maxK	Numerical value: the maximum number of clusters to test for, K (default: 10)
des	Data frame: contains annotation data for the input data for automatic reordering
ref_method	Character string: refers to which reference method to use (recommended: leav- ing as default)
repsref	Numerical value: how many resampling reps to use for reference (default: 100, recommended: 100-250)
repsreal	Numerical value: how many resampling reps to use for real data (default: 100, recommended: 100-250)
clusteralg	String: dictates which inner clustering algorithm to use for M3C
distance	String: dictates which distance metric to use for M3C (recommended: leaving as default)
pacx1	Numerical value: The 1st x co-ordinate for calculating the pac score from the CDF (default: 0.1)
pacx2	Numerical value: The 2nd x co-ordinate for calculating the pac score from the CDF (default: 0.9)

M3C

mydata

printres	Logical flag: whether to print all results into current directory
printheatmaps	Logical flag: whether to print all the heatmaps into current directory
showheatmaps	Logical flag: whether to show the heatmaps on screen
seed	Numerical value: fixes the seed if you want to repeat results, set the seed to 123 for example here
removeplots	Logical flag: whether to remove all plots
dend	Logical flag: whether to compute the dendrogram and p values for the optimal K or not
silent	Logical flag: whether to remove messages or not
doanalysis	Logical flag: whether to analyse the clinical variable supplied (univariate only)
analysistype	Character string: refers to which kind of statistical analysis to do on the data, survival, Kruskal-Wallis (kw), or chi-squared (chi)
variable	Character string: if not doing survival what is the dependant variable (column name) called in the data frame
fsize	Numerical value: determines the font size of the ggplot2 plots
method	Numerical value: 1 refers to the Monte Carlo reference procedure, 2 to using a penalty term (faster)
lambda	Numerical value: controls the strength of the penalty on the PAC score (default = 0.1)

Value

A list, containing: 1) the stability results and 2) all the output data (another list) 3) reference stability scores (see vignette for more details on how to easily access)

Examples

res <- M3C(mydata)

mydata

GBM expression data

Description

This is the expression data from the GBM dataset. It is a data frame with 50 columns and 1740 rows.

Author(s)

Chris John <chris.r.john86@gmail.com>

References

Verhaak, Roel GW, et al. "Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1." Cancer cell 17.1 (2010): 98-110.

Description

This is a flexible PCA function that can be run on a standard data frame (or the M3C results object). It is a wrapper for prcomp/ggplot2 code and can be customised with different colours and font sizes and more.

Usage

```
pca(mydata, K = FALSE, printres = FALSE, labels = FALSE,
  text = FALSE, axistextsize = 18, legendtextsize = 18,
  dotsize = 5, textlabelsize = 4, legendtitle = "Group",
  controlscale = FALSE, scale = 1, low = "grey", high = "red",
  colvec = c("sky blue", "gold", "violet", "darkorchid", "slateblue",
  "forestgreen", "violetred", "orange", "midnightblue", "grey31", "black"),
  printheight = 20, printwidth = 22, pcx = 1, pcy = 2,
  scaler = FALSE)
```

Arguments

mydata	Data frame or matrix or M3C results object: if dataframe/matrix should have samples as columns and rows as features
К	Numerical value: if running on the M3C results object, which value was the optimal K?
printres	Logical flag: whether to print the PCA into current directory
labels	Character vector: if we want to just label with gender for example
text	Character vector: if we wanted to label the samples with text IDs to look for outliers
axistextsize	Numerical value: axis text size
legendtextsize	Numerical value: legend text size
dotsize	Numerical value: dot size
textlabelsize	Numerical value: text inside plot label size
legendtitle	Character vector: text legend title
controlscale	Logical flag: whether to control the colour scale
scale	Numerical value: 1=spectral palette, 2=manual low and high palette, 3=categor- ical labels
low	Character vector: continuous scale low colour
high	Character vector: continuous scale high colour
colvec	Character vector: a series of colours in vector for categorical labels, e.g. c("sky blue", "gold")
printheight	Numerical value: png height (default=20)
printwidth	Numerical value: png width (default=22)
рсх	Numerical value: which PC to plot on X axis (default=1)
рсу	Numerical value: which PC to plot on Y axis (default=2)
scaler	$Logical \ flag: \ whether \ to \ scale \ the \ features \ of \ the \ input \ data \ (rows) \ (default=FALSE)$

рса

tsne

Value

A PCA plot object

Examples

PCA <- pca(mydata)

tsne

tsne: A t-SNE function

Description

This is a flexible t-SNE function that can be run on a standard data frame (or the M3C results object). It is a wrapper for Rtsne/ggplot2 code and can be customised with different colours and font sizes and more.

Usage

```
tsne(mydata, K = FALSE, labels = FALSE, perplex = 15,
printres = FALSE, seed = FALSE, axistextsize = 18,
legendtextsize = 18, dotsize = 5, textlabelsize = 4,
legendtitle = "Group", controlscale = FALSE, scale = 1,
low = "grey", high = "red", colvec = c("sky blue", "gold",
"violet", "darkorchid", "slateblue", "forestgreen", "violetred",
"orange", "midnightblue", "grey31", "black"), printheight = 20,
printwidth = 22, text = FALSE)
```

Arguments

mydata	Data frame or matrix or M3C results object: if dataframe/matrix should have samples as columns and rows as features
К	Numerical value: if running on the M3C results object, which value was the optimal K?
labels	Character vector: if we want to just label with gender for example
perplex	Numerical value: perplexity value that Rtsne uses internally
printres	Logical flag: whether to print the t-SNE into current directory
seed	Numerical value: optionally set the seed
axistextsize	Numerical value: axis text size
legendtextsize	Numerical value: legend text size
dotsize	Numerical value: dot size
textlabelsize	Numerical value: text inside plot label size
legendtitle	Character vector: text legend title
controlscale	Logical flag: whether to control the colour scale
scale	Numerical value: 1=spectral palette, 2=manual low and high palette, 3=categor- ical labels
low	Character vector: continuous scale low colour
high	Character vector: continuous scale high colour

colvec	Character vector: a series of colours in vector for categorical labels, e.g. c("sky blue", "gold")
printheight	Numerical value: png height
printwidth	Numerical value: png width
text	Character vector: if we wanted to label the samples with text IDs to look for outliers

Value

A t-SNE plot object

Examples

TSNE <- tsne(mydata,perplex=15)</pre>

umap

umap: A umap function

Description

This is a flexible umap function that can be run on a standard data frame (or the M3C results object). It is a wrapper for umap/ggplot2 code and can be customised with different colours and font sizes and more.

Usage

```
umap(mydata, K = FALSE, labels = FALSE, printres = FALSE,
seed = FALSE, axistextsize = 18, legendtextsize = 18,
dotsize = 5, textlabelsize = 4, legendtitle = "Group",
controlscale = FALSE, scale = 1, low = "grey", high = "red",
colvec = c("sky blue", "gold", "violet", "darkorchid", "slateblue",
"forestgreen", "violetred", "orange", "midnightblue", "grey31", "black"),
printheight = 20, printwidth = 22, text = FALSE)
```

Arguments

mydata	Data frame or matrix or M3C results object: if dataframe/matrix should have samples as columns and rows as features
К	Numerical value: if running on the M3C results object, which value was the optimal K?
labels	Character vector: if we want to just label with gender for example
printres	Logical flag: whether to print the UMAP into current directory
seed	Numerical value: optionally set the seed
axistextsize	Numerical value: axis text size
legendtextsize	Numerical value: legend text size
dotsize	Numerical value: dot size
textlabelsize	Numerical value: text inside plot label size
legendtitle	Character vector: text legend title

umap

controlscale	Logical flag: whether to control the colour scale
scale	Numerical value: 1=spectral palette, 2=manual low and high palette, 3=categor- ical labels
low	Character vector: continuous scale low colour
high	Character vector: continuous scale high colour
colvec	Character vector: a series of colours in vector for categorical labels, e.g. c("sky blue", "gold")
printheight	Numerical value: png height
printwidth	Numerical value: png width
text	Character vector: if we wanted to label the samples with text IDs to look for outliers

Value

A umap plot object

Examples

UMAP <- umap(mydata)

Index

*Topic **data** desx, 2 mydata, 5 clustersim, 2 desx, 2 featurefilter, 3 M3C, 4 mydata, 5 pca, 6 tsne, 7 umap, 8