
Package ‘GOfuncR’
April 15, 2020

Type Package

Title Gene ontology enrichment using FUNC

Version 1.6.1

Date 2019-10-22

Author Steffi Grote

Maintainer Steffi Grote <grote.steffi@gmail.com>

Description GOfuncR performs a gene ontology enrichment analysis based on
the ontology enrichment software FUNC. GO-annotations are obtained
from OrganismDb or OrgDb packages ('Homo.sapiens' by default);
the GO-graph is included in the package and updated regularly (07-Oct-2019).
GOfuncR provides the standard candidate vs. background enrichment analysis
using the hypergeometric test, as well as three additional tests:
(i) the Wilcoxon rank-sum test that is used when genes are ranked,
(ii) a binomial test that is used when genes are associated with two counts and
(iii) a Chi-square or Fisher's exact test that is used in cases when
genes are associated with four counts.
To correct for multiple testing and interdependency of the tests,
family-wise error rates are computed based on random permutations
of the gene-associated variables.
GOfuncR also provides tools for exploring the ontology graph and the annotations,
and options to take gene-length or spatial clustering of genes into account.
It is also possible to provide custom gene coordinates, annotations and ontologies.

License GPL (>= 2)

Imports Rcpp (>= 0.11.5), mapplots (>= 1.5), gtools (>= 3.5.0),
GenomicRanges (>= 1.28.4), IRanges, AnnotationDbi, utils,
grDevices, graphics, stats,

Depends R (>= 3.4), vioplot (>= 0.2),

LinkingTo Rcpp

Suggests Homo.sapiens, BiocStyle, knitr, testthat

VignetteBuilder knitr

biocViews GeneSetEnrichment, GO

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/GOfuncR

git_branch RELEASE_3_10

git_last_commit a485fbd

1

2 get_anno_categories

git_last_commit_date 2020-03-29

Date/Publication 2020-04-14

R topics documented:

get_anno_categories . 2
get_anno_genes . 4
get_child_nodes . 5
get_ids . 7
get_names . 8
get_parent_nodes . 9
go_enrich . 10
plot_anno_scores . 13
refine . 15

Index 17

get_anno_categories Get all associated ontology categories for the input genes

Description

Returns all associated GO-categories given a vector of gene-symbols, e.g. c(’SPAG5’, ’BTC’).

Usage

get_anno_categories(genes, database = 'Homo.sapiens', annotations = NULL,
term_df = NULL, godir = NULL, silent = FALSE)

Arguments

genes a character() vector of gene-symbols, e.g. c(’SPAG5’, ’BTC’).

database optional character() defining an OrganismDb or OrgDb annotation package from
Bioconductor, like ’Mus.musculus’ (mouse) or ’org.Pt.eg.db’ (chimp).

annotations optional data.frame() with two character() columns: gene-symbols and GO-
categories. Alternative to ’database’.

term_df optional data.frame() with an ontology ’term’ table. Alternative to the default
integrated GO-graph or godir.

godir optional character() specifying a directory that contains the ontology table ’term.txt’.
Alternative to the default integrated GO-graph or term_df.

silent logical. If TRUE all output to the screen except for warnings and errors is sup-
pressed.

get_anno_categories 3

Details

Besides the default ’Homo.sapiens’, also other OrganismDb or OrgDb packages from Bioconductor,
like ’Mus.musculus’ (mouse) or ’org.Pt.eg.db’ (chimp), can be used. It is also possible to directly
provide a dataframe with annotations, which is then searched for the input genes and filtered for
GO-categories that are present in the ontology.

By default the package’s integrated ontology is used, but a custom ontology can be defined, too.
For details on how to use a custom ontology with term_df or godir please refer to the package’s
vignette. The advantage of term_df over godir is that the latter reads the file ’term.txt’ from disk
and therefore takes longer.

Value

a data.frame() with four columns: gene (character()), GO-ID (character(), GO-name (character()
and GO-domain (character()).

Note

This gives only direct annotations of genes to GO-categories. By definition genes are also indirectly
annotated to all parent nodes of those categories. Use get_parent_nodes to get the higher level
categories of the directly annotated GO-categories.
Also note that GO-categories which are not represented or obsolete in the internal GO-graph of
GOfuncR or the custom ontology provided through term_df or godir are removed to be consistent
with the annotations used in go_enrich.

Author(s)

Steffi Grote

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25, 25-29.

See Also

get_anno_genes
get_parent_nodes
get_names

Examples

get the GO-annotations for two random genes
anno1 = get_anno_categories(c('BTC', 'SPAG5'))
head(anno1)

4 get_anno_genes

get_anno_genes Get genes that are annotated to GO-categories

Description

Given a vector of GO-IDs, e.g. c(’GO:0072025’,’GO:0072221’) this function returns all genes that
are annotated to those GO-categories. This includes genes that are annotated to any of the child
nodes of a GO-category.

Usage

get_anno_genes(go_ids, database = 'Homo.sapiens', genes = NULL, annotations = NULL,
term_df = NULL, graph_path_df = NULL, godir = NULL)

Arguments

go_ids character() vector of GO-IDs, e.g. c(’GO:0051082’, ’GO:0042254’).

database optional character() defining an OrganismDb or OrgDb annotation package from
Bioconductor, like ’Mus.musculus’ (mouse) or ’org.Pt.eg.db’ (chimp).

genes optional character() vector of gene-symbols. If defined, only annotations of
those genes are returned.

annotations optional data.frame() with two character() columns: gene-symbols and GO-
categories. Alternative to ’database’.

term_df optional data.frame() with an ontology ’term’ table. Alternative to the default
integrated GO-graph or godir. Also needs graph_path_df.

graph_path_df optional data.frame() with an ontology ’graph_path’ table. Alternative to the
default integrated GO-graph or godir. Also needs term_df.

godir optional character() specifying a directory that contains the ontology tables ’term.txt’
and ’graph_path.txt’. Alternative to the default integrated GO-graph or term_df
+ graph_path_df.

Details

Besides the default ’Homo.sapiens’, also other OrganismDb or OrgDb packages from Bioconductor,
like ’Mus.musculus’ (mouse) or ’org.Pt.eg.db’ (chimp), can be used. It is also possible to directly
provide a data.frame() with annotations, which is then searched for the input GO-categories and
their child nodes.

By default the package’s integrated GO-graph is used to find child nodes, but a custom ontology
can be defined, too. For details on how to use a custom ontology with term_df + graph_path_df
or godir please refer to the package’s vignette. The advantage of term_df + graph_path_df over
godir is that the latter reads the files ’term.txt’ and ’graph_path.txt’ from disk and therefore takes
longer.

Value

A data.frame() with two columns: GO-IDs (character()) and the annotated genes (character()). The
output is ordered by GO-ID and gene-symbol.

get_child_nodes 5

Author(s)

Steffi Grote

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25, 25-29.

See Also

get_anno_categories
get_ids
get_names
get_child_nodes
get_parent_nodes

Examples

find all genes that are annotated to GO:0000109
("nucleotide-excision repair complex")
get_anno_genes(go_ids='GO:0000109')

find out wich genes from a set of genes
are annotated to some GO-categories
genes = c('AGTR1', 'ANO1', 'CALB1', 'GYG1', 'PAX2')
gos = c('GO:0001558', 'GO:0005536', 'GO:0072205', 'GO:0006821')
anno_genes = get_anno_genes(go_ids=gos, genes=genes)
add the names and domains of the GO-categories
cbind(anno_genes ,get_names(anno_genes$go_id)[,2:3])

find all annotations to GO-categories containing 'serotonin receptor'
sero_ids = get_ids('serotonin receptor')
sero_anno = get_anno_genes(go_ids=sero_ids$go_id)
merge with names of GO-categories
head(merge(sero_ids, sero_anno))

get_child_nodes Get all child nodes of gene ontology categories

Description

Returns all child nodes (sub-categories) of GO-categories given their GO-IDs, e.g. c(’GO:0042254’,
’GO:0000109’). The output also states the shortest distance to the child node. Note that a GO-ID
itself is also considered as child with distance 0.

Usage

get_child_nodes(go_ids, term_df = NULL, graph_path_df = NULL, godir = NULL)

6 get_child_nodes

Arguments

go_ids a character() vector of GO-IDs, e.g. c(’GO:0051082’, ’GO:0042254’).

term_df optional data.frame() with an ontology ’term’ table. Alternative to the default
integrated GO-graph or godir. Also needs graph_path_df.

graph_path_df optional data.frame() with an ontology ’graph_path’ table. Alternative to the
default integrated GO-graph or godir. Also needs term_df.

godir optional character() specifying a directory that contains the ontology tables ’term.txt’
and ’graph_path.txt’. Alternative to the default integrated GO-graph or term_df
+ graph_path_df.

Details

By default the package’s integrated GO-graph is used, but a custom ontology can be defined, too.
For details on how to use a custom ontology with term_df + graph_path_df or godir please refer
to the package’s vignette. The advantage of term_df + graph_path_df over godir is that the latter
reads the files ’term.txt’ and ’graph_path.txt’ from disk and therefore takes longer.

Value

a data.frame() with four columns: parent GO-ID (character()), child GO-ID (character()), child
GO-name (character()) and distance (numeric()).

Author(s)

Steffi Grote

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25, 25-29.

See Also

get_names
get_parent_nodes

Examples

get the child nodes (sub-categories) of two random GO-IDs
child_nodes = get_child_nodes(c('GO:0090070', 'GO:0000112'))
child_nodes

get_ids 7

get_ids Get the ID of a GO-category given its name

Description

Returns GO-categories given (part of) their name. Matching is not case-sensitive.

Usage

get_ids(go_name, term_df = NULL, godir = NULL)

Arguments

go_name character(). (partial) name of a GO-category

term_df optional data.frame() with an ontology ’term’ table. Alternative to the default
integrated GO-graph or godir.

godir optional character() specifying a directory that contains the ontology table ’term.txt’.
Alternative to the default integrated GO-graph or term_df.

Details

For details on how to use a custom ontology with term_df or godir please refer to the package’s
vignette. The advantage of term_df over godir is that the latter reads the file ’term.txt’ from disk
and therefore takes longer.

Value

a data.frame() with three columns: the full names (character()) of the GO-categories that contain
go_name; together with the GO-domain (’cellular_component’, ’biological_process’ or ’molecu-
lar_function’) and the GO-category IDs (character()).

Note

This is just a grep(...,ignore.case=TRUE) on the node names of the ontology.
More sophisticated searches, e.g. with regular expressions, could be performed on the table returned
by get_ids('') which lists all non-obsolete GO-categories.

Author(s)

Steffi Grote

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25, 25-29.

See Also

get_names
get_parent_nodes
get_child_nodes

8 get_names

Examples

get GO-IDs of categories that contain 'gabaergic' in their names
get_ids('gabaergic')

get GO-IDs of categories that contain 'blood-brain barrier' in their names
get_ids('blood-brain barrier')

get all valid GO-categories
all_nodes = get_ids('')
head(all_nodes)

get_names Get the full names of gene ontology categories given the IDs

Description

Returns the full names and the domains of GO-categories given the GO-IDs, e.g. ’GO:0042254’.
By default the package’s integrated GO-graph is used, but a custom ontology can be defined, too.

Usage

get_names(go_ids, term_df = NULL, godir = NULL)

Arguments

go_ids a character() vector of GO-IDs, e.g. c(’GO:0051082’, ’GO:0042254’).

term_df optional data.frame() with an ontology ’term’ table. Alternative to the default
integrated GO-graph or godir.

godir optional character() specifying a directory that contains the ontology table ’term.txt’.
Alternative to the default integrated GO-graph or term_df.

Details

For details on how to use a custom ontology with term_df or godir please refer to the package’s
vignette. The advantage of term_df over godir is that the latter reads the file ’term.txt’ from disk
and therefore takes longer.

Value

a data.frame() with three columns: go_id (character()), go_name (character()) and root_node (do-
main, character()).

Author(s)

Steffi Grote

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25, 25-29.

get_parent_nodes 9

See Also

get_ids
get_child_nodes
get_parent_nodes

Examples

get the full names of three random GO-IDs
get_names(c('GO:0051082', 'GO:0042254', 'GO:0000109'))

get_parent_nodes Get all parent nodes of gene ontology categories

Description

Returns all parent nodes (higher level categories) of GO-categories given their GO-IDs, e.g. c(’GO:0042254’,
’GO:0000109’). The output also states the shortest distance to the parent node. Note that a GO-ID
itself is also considered as parent with distance 0.

Usage

get_parent_nodes(go_ids, term_df = NULL, graph_path_df = NULL, godir = NULL)

Arguments

go_ids a character() vector of GO-IDs, e.g. c(’GO:0051082’, ’GO:0042254’).

term_df optional data.frame() with an ontology ’term’ table. Alternative to the default
integrated GO-graph or godir. Also needs graph_path_df.

graph_path_df optional data.frame() with an ontology ’graph_path’ table. Alternative to the
default integrated GO-graph or godir. Also needs term_df.

godir optional character() specifying a directory that contains the ontology tables ’term.txt’
and ’graph_path.txt’. Alternative to the default integrated GO-graph or term_df
+ graph_path_df.

Details

By default the package’s integrated GO-graph is used, but a custom ontology can be defined, too.
For details on how to use a custom ontology with term_df + graph_path_df or godir please refer
to the package’s vignette. The advantage of term_df + graph_path_df over godir is that the latter
reads the files ’term.txt’ and ’graph_path.txt’ from disk and therefore takes longer.

Value

a data.frame() with four columns: child GO-ID (character()), parent GO-ID (character()), parent
GO-name (character()) and distance (numeric()).

Author(s)

Steffi Grote

10 go_enrich

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25, 25-29.

See Also

get_names
get_child_nodes

Examples

get the parent nodes (higher level GO-categories) of two random GO-IDs
parents = get_parent_nodes(c('GO:0051082', 'GO:0042254'))
parents

go_enrich Test gene sets for enrichment in GO-categories

Description

Tests GO-categories for enrichment of user defined gene sets, using either the hypergeometric (de-
fault), Wilcoxon rank-sum, binomial or 2x2 contingency table test.

Usage

go_enrich(genes, test = 'hyper', n_randsets = 1000, organismDb = 'Homo.sapiens', gene_len = FALSE,
regions = FALSE, circ_chrom = FALSE, silent = FALSE, domains = NULL, orgDb = NULL,
txDb = NULL, annotations = NULL, gene_coords = NULL, godir = NULL)

Arguments

genes a data.frame() with gene-symbols (character()) in the first column and test-
dependent additional numeric() columns:
If test='hyper' (default) a second column with 1 for candidate genes and 0
for background genes. If no background genes are defined, all remaining genes
from the internal dataset are used as background. All candidate genes are im-
plicitly part of the background gene set.
If test='wilcoxon' a second column with the score that is associated with each
gene.
If test='binomial' two additional columns with two gene-associated integers.
If test='contingency' four additional columns with four gene-associated in-
tegers.
For test='hyper' with regions=TRUE the first column describes chromosomal
regions (’chr:start-stop’, e.g. ’9:0-39200000’).
Note that each gene has to be unique in the data.frame; e.g. for test='wilcoxon'
a gene cannot have two different scores assigned.

test character(). ’hyper’ (default) for the hypergeometric test, ’wilcoxon’ for the
Wilcoxon rank-sum test, ’binomial’ for the binomial test and ’contingency’ for
the 2x2-contingency table test (fisher’s exact test or chi-square).

n_randsets integer defining the number of random sets for computing the FWER.

go_enrich 11

organismDb character(). Annotation package for GO-annotations and gene coordinates. Be-
sides the default ’Homo.sapiens’ also ’Mus.musculus’ and ’Rattus.norvegicus’
are currently available on Bioconductor.

gene_len logical. Correct for gene length. If TRUE the probability of a background gene
to be chosen as a candidate gene in a random set is dependent on the gene
length. If FALSE genes are chosen randomly with equal probability each. Only
for test='hyper'.

regions logical. If TRUE chromosomal regions are analyzed, and genes are automatically
extracted from the regions defined in genes[,1] as e.g. ’9:0-39200000’. Note
that this option requires the input of background regions.

circ_chrom logical. When genes defines chromosomal regions, circ_chrom=TRUE uses
background regions from the same chromosome and allows randomly chosen
blocks to overlap multiple background regions. Only if test='hyper'.

silent logical. If TRUE all output to the screen except for warnings and errors is sup-
pressed.

domains optional character() vector containing one or more of the three GO-domains ’cel-
lular_component’, ’biological_process’ and ’molecular_function’. If defined,
the analysis will be reduced to those domains which saves time.\ cr If a custom
ontology is specified in godir it might have a different domains.

orgDb optional character() naming an OrgDb annotation package from Bioconductor.
If orgDb is set, organismDb is not used. OrgDb annotations are available for
a wider range of species, e.g. ’org.Pt.eg.db’ for chimp and ’org.Gg.eg.db’ for
chicken. Note that options gene_len and regions also need a txDb for the gene
coordinates (which are integrated in OrganismDb).

txDb optional character() naming an TxDb annotation package from Bioconductor
(e.g. ’TxDb.Ptroglodytes.UCSC.panTro4.refGene’) for the gene coordinates.
Only needed when orgDb is specified, and options gene_len or regions are
set. Note that orgDb is needed whenever txDb is defined, even when custom
annotations are provided, because the orgDb package is used for Entrez-ID to
gene-symbol conversions.

annotations optional data.frame() for custom annotations, with two character() columns: (1)
gene-symbols and (2) GO-categories. Note that options gene_len and regions
also need an organismDb or txDb + orgDb.

gene_coords optional data.frame() for custom gene coordinates, with four columns: gene-
symbols (character), chromosome (character), start (integer), end (integer). When
gene_len=TRUE or regions=TRUE these custom gene coordinates are used in-
stead of the ones obtained from organismDb or txDb.

godir optional character() specifying a directory () that contains a custom GO-graph
(files ’term.txt’, ’term2term.txt’ and ’graph_path.txt’). Alternative to the default
integrated GO-graph.
For details please refer to the package’s vignette.

Details

Please also refer to the package’s vignette.
GO-annotations are taken from a Bioconductor annotation package (OrganismDb package ’Homo.sapiens’
by default), but also other ’OrganismDb’ or ’OrgDb’ packages can be used. It is also possible to
provide custom annotations as a data.frame().

12 go_enrich

The ontology graph is integrated, but a custom version can be defined as well with parameter ’godir’.
As long as the ontology tables are in the right format (see link to description in vignette), any
ontology can be used in GOfuncR, it is not restricted to the gene ontology.

The statistical analysis is based on the ontology enrichment software FUNC [2]. go_enrich offers
four different statistical tests: (1) the hypergeometric test for a candidate and a background gene
set; (2) the Wilcoxon rank-sum test for genes that are ranked by scores (e.g. p-value for differential
expression); (3) the binomial test for genes that have two associated counts (e.g. amino-acid changes
on the human and the chimp lineage); and (4) a 2x2-contingency table test for genes that have four
associated counts (e.g. for a McDonald-Kreitman test).

To account for multiple testing family-wise error rates are computed using randomsets. Besides
naming candidate genes explicitly, for the hypergeometric test it is also possible to provide entire
genomic regions as input. The enrichment analysis is then performed for all genes located in or
overlapping these regions and the multiple testing correction accounts for the spatial clustering of
genes.

Value

A list with components

results a data.frame() with the FWERs from the enrichment analyses per ontology
category, ordered by ’FWER_overrep’, ’raw_p_overrep’, -’FWER_underrep’,
-’raw_p_underrep’, ’ontology’ and ’node_id’, or the corresponding columns if
another test then the hypergeometric test is used. This table contains the com-
bined results for all three ontology domains. Note that GO-categories without
any annotations of candidate or background genes are not listed.

genes the input genes data.frame(), excluding those genes for which no GO-annotations
are available and which therefore were not included in the enrichment analysis.
If gene_len=TRUE, also genes without gene coordinates are excluded.

databases a data.frame() with the used annotation packages and GO-graph.
min_p a data.frame() with the minimum p-values from the randomsets that are used to

compute the FWER.

Author(s)

Steffi Grote

References

[1] Ashburner, M. et al. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics
25: 25-29. doi: 10.1038/75556
[2] Pruefer, K. et al. (2007). FUNC: A package for detecting significant associations between gene
sets and ontological. BMC Bioinformatics 8: 41. doi: 10.1186/14712105841

See Also

get_parent_nodes
get_child_nodes
get_anno_categories
get_anno_genes
plot_anno_scores
get_names
get_ids

https://doi.org/10.1038/75556
https://doi.org/10.1186/1471-2105-8-41

plot_anno_scores 13

Examples

Note that argument 'n_randsets' is reduced
to lower computational time in the following examples.
Using the default value is recommended.

Perform a GO-enrichment analysis for some human genes
with a defined background set
create input dataframe that defines the candidate and backround genes
candi_gene_ids = c('NCAPG', 'APOL4', 'NGFR', 'NXPH4', 'C21orf59', 'CACNG2',

'AGTR1', 'ANO1', 'BTBD3', 'MTUS1', 'CALB1', 'GYG1', 'PAX2')
bg_gene_ids = c('FGR', 'NPHP1', 'DRD2', 'ABCC10', 'PTBP2', 'JPH4', 'SMARCC2',

'FN1', 'NODAL', 'CYP1A2', 'ACSS1', 'CDHR1', 'SLC25A36', 'LEPR', 'PRPS2',
'TNFAIP3', 'NKX3-1', 'LPAR2', 'PGAM2')

is_candidate = c(rep(1,length(candi_gene_ids)), rep(0,length(bg_gene_ids)))
genes = data.frame(gene_ids=c(candi_gene_ids, bg_gene_ids), is_candidate)
genes

run enrichment analysis
go_res = go_enrich(genes, n_randset=100)

go_enrich returns a list with 4 elements:
1) results from the anlysis
(ordered by FWER for overrepresentation of candidate genes)
head(go_res[[1]])
see the top GOs from every GO-domain
by(go_res[[1]], go_res[[1]][,'ontology'], head)
2) all valid input genes
go_res[[2]]
3) annotation databases used
go_res[[3]]
4) minimum p-values from randomsets
head(go_res[[4]])

see the package's vignette for more examples

plot_anno_scores Plot distribution of scores of genes annotated to GO-categories

Description

Uses the result of a GO-enrichment analysis performed with go_enrich and a vector of GO-IDs
and plots for each of these GO-IDs the scores of the annotated genes. This refers to the scores that
were provided as user-input in the go_enrich analysis.
plot_anno_scores works with all four tests implemented in go_enrich (hypergeometric, Wilcoxon
rank-sum, binomial and 2x2 contingency table test), with test-specific output (see details).

Usage

plot_anno_scores(res, go_ids, annotations = NULL)

14 plot_anno_scores

Arguments

res an object returned from go_enrich (list() of 4 elements).

go_ids character() vector of GO-IDs, e.g. c(’GO:0005737’,’GO:0071495’). This spec-
ifies the GO-categories that are plotted.

annotations optional data.frame() for custom annotations, with two character() columns: (1)
gene-symbols and (2) GO-categories. This is needed if go_enrich was run with
custom annotations to generate res, too.

Details

The plot depends on the statistical test that was specified in the go_enrich call.

For the hypergeometric test pie charts show the amounts of candidate and background genes that
are annotated to the GO-categories and the root nodes (candidate genes in the colour of the cor-
responding root node). The top panel shows the odds-ratio and 95%-CI from fisher’s exact test
(two-sided) comparing the GO-categories with their root nodes. Note that go_enrich reports the
the hypergeometric tests for over- and under-representation of candidate genes which correspond to
the one-sided fisher’s exact tests.

For the Wilcoxon rank-sum test violin plots show the distribution of the scores of genes that are
annotated to each GO-category and the root nodes. Horizontal lines in the left panel indicate the
median of the scores that are annotated to the root nodes. The Wilcoxon rank-sum test reported in
the go_enrich result compares the scores annotated to a GO-category with the scores annotated to
the corresponding root node.

For the binomial test pie charts show the amounts of A and B counts associated with each GO-
category and root node, (A in the colour of the corresponding root node). The top-panel shows
point estimates and the 95%-CI of p(A) in the nodes, as well as horizontal lines that correspond to
p(A) in the root nodes. The p-value in the returned object is based on the null hypothesis that p(A)
in a node equals p(A) in the corresponding root node. Note that go_enrich reports that value for
one-sided binomial tests.

For the 2x2 contingency table test pie charts show the proportions of A and B, as well as C and D
counts associated with a GO-category. Root nodes are not shown, because this test is independent
of the root category. The top panel shows the odds ratio and 95%-CI from Fisher’s exact test (two-
sided) comparing A/B and C/D inside one node. Note that in go_enrich, if all four values are
>=10, a chi-square test is performed instead of fisher’s exact test.

Value

For the hypergeometric, binomial and 2x2 contingency table test, a data.frame() with the statistics
that are used in the plots.
For the Wilcoxon rank-sum test no statistical results are plotted, just the distribution of annotated
scores. The returned element in this case is a list() with three data frames: annotations of genes
to the GO-categories, annotations of genes to the root nodes and a table which contains for every
GO-ID the corresponding root node.

Author(s)

Steffi Grote

See Also

go_enrich
get_anno_genes

refine 15

get_names
vioplot

Examples

see the package's vignette for more examples

Note that argument 'n_randsets' is reduced
to lower computational time in the example.

Assign two random counts to some genes to create example input
set.seed(123)
high_A_genes = c('G6PD', 'GCK', 'GYS1', 'HK2', 'PYGL', 'SLC2A8',

'UGP2', 'ZWINT', 'ENGASE')
low_A_genes = c('CACNG2', 'AGTR1', 'ANO1', 'BTBD3', 'MTUS1', 'CALB1',

'GYG1', 'PAX2')
A_counts = c(sample(15:25, length(high_A_genes)),

sample(5:15, length(low_A_genes)))
B_counts = c(sample(5:15, length(high_A_genes)),

sample(15:25, length(low_A_genes)))
genes = data.frame(gene=c(high_A_genes, low_A_genes), A_counts, B_counts)

perform enrichment analysis to find GO-categories with high fraction of A
go_binom = go_enrich(genes, test='binomial', n_randsets=20)

plot sums of A and B counts associated with the top GO-categories
top_gos = head(go_binom[[1]]$node_id)
stats = plot_anno_scores(go_binom, go_ids=top_gos)

look at the results of binomial test used for plotting
(this is two-sided, go_enrich reports one-sided tests)
head(stats)

refine Refine results given a FWER threshold

Description

Given a FWER threshold, this function refines the results from go_enrich() like described in the
elim algorithm of [1].
This algorithm removes genes from significant child-categories and then checks whether a category
is still significant.
This way significant results are restricted to more specific categories.

Usage

refine(res, fwer = 0.05, fwer_col = 7, annotations = NULL)

16 refine

Arguments

res list() returned from go_enrich()

fwer numeric() FWER-threshold. Categories with a FWER < fwer will be labeled
significant.

fwer_col numeric() or character() specifying the column of go_enrich()[[1]] that is to
be filtered. E.g. 6 for under-representation or 7 over-representation of candidate
genes in the hypergeometric test.

annotations optional data.frame() with custom annotations. Only needed if go_enrich()
was run with custom annotations in the first place.

Details

For each domain a p-value is found by interpolation, that corresponds to the input FWER threshold.
Since GO-domains are independent graphs, the same FWER will correspond to different p-values,
e.g. in ’molecular_function’ and ’biological_process’.

Value

a data.frame() with p-values after refinement for categories that were significant in go_enrich()[[1]]
given the FWER-threshold.

Author(s)

Steffi Grote

References

[1] Alexa, A. et al. (2006). Improved scoring of functional groups from gene expression data by
decorrelating GO graph structure. Bioinformatics 22, 1600-1607.

See Also

go_enrich

Examples

perform enrichment analysis for some genes
gene_ids = c('NCAPG', 'APOL4', 'NGFR', 'NXPH4', 'C21orf59', 'CACNG2', 'AGTR1',

'ANO1', 'BTBD3', 'MTUS1', 'CALB1', 'GYG1', 'PAX2')
input_hyper = data.frame(gene_ids, is_candidate=1)
res_hyper = go_enrich(input_hyper, n_randset=100, silent=TRUE)
head(res_hyper[[1]])
perform refinement for categories with FWER < 0.1
refined = refine(res_hyper, fwer=0.1)
refined

Index

∗Topic htest
go_enrich, 10

get_anno_categories, 2, 5, 12
get_anno_genes, 3, 4, 12, 14
get_child_nodes, 5, 5, 7, 9, 10, 12
get_ids, 5, 7, 9, 12
get_names, 3, 5–7, 8, 10, 12, 15
get_parent_nodes, 3, 5–7, 9, 9, 12
go_enrich, 3, 10, 13, 14, 16

plot_anno_scores, 12, 13

refine, 15

vioplot, 15

17

	get_anno_categories
	get_anno_genes
	get_child_nodes
	get_ids
	get_names
	get_parent_nodes
	go_enrich
	plot_anno_scores
	refine
	Index

