Package 'CountClust'

March 5, 2020

```
Title Clustering and Visualizing RNA-Seq Expression Data using Grade
     of Membership Models
Version 1.14.0
Date 2016-03-13
Maintainer Kushal Dey <kkdey@uchicago.edu>
Description Fits grade of membership models (GoM, also known as admixture models) to clus-
      ter RNA-seq gene expression count data, identifies characteristic genes driving cluster member-
     ships, and provides a visual summary of the cluster memberships.
Depends R (>= 3.4), ggplot2 (>= 2.1.0)
URL https://github.com/kkdey/CountClust
License GPL (>= 2)
LazyData true
Encoding UTF-8
Imports SQUAREM, slam, maptpx, plyr(>= 1.7.1), cowplot, gtools,
     flexmix, picante, limma, parallel, reshape2, stats, utils,
      graphics, grDevices
Suggests knitr, kableExtra, BiocStyle, Biobase, roxygen2,
      RColorBrewer, devtools, xtable
VignetteBuilder knitr
biocViews ImmunoOncology, RNASeq, GeneExpression, Clustering,
      Sequencing, StatisticalMethod, Software, Visualization
RoxygenNote 6.0.1
git_url https://git.bioconductor.org/packages/CountClust
git_branch RELEASE_3_10
git_last_commit 84275ce
git_last_commit_date 2019-10-29
Date/Publication 2020-03-04
Author Kushal Dey [aut, cre],
     Joyce Hsiao [aut],
     Matthew Stephens [aut]
```

Type Package

2 **BatchCorrectedCounts**

R topics documented:

	AbundanceGoM	
	BatchCorrectedCounts	2
	compare_omega	1
	compGoM	
	ex.counts	
	ExtractHighCorFeatures	
	ExtractTopFeatures	
	FitGoM	
	GTExV6Brain.FitGoM	
	handleNA	
	MouseDeng2014.FitGoM	
	MouseJaitinSpleen.FitGoM	
	nullmodel_GoM	
	RemoveSparseFeatures	
	StructureGGplot	
	oracial coopies.	•
Index	1	
		-
Abund	lanceGoM GoM model fit for abundance data	

Description

GoM model fit for abundance data

Usage

AbundanceGoM

Format

A list of GoM model output

Value

A list of GoM model output

BatchCorrectedCounts Obtain Batch effect Corrected counts

Description

This function first converts counts data to log CPM data, then apply a linear model with the batch effect as a factor. We take the sum of intercept, residuals and mean batch effect across all the batches and then inverse transform it back to counts to get rid of batch effects.

Usage

BatchCorrectedCounts(data, batch_lab, use_parallel = TRUE)

compare_omega 3

Arguments

data count matrix, with samples along the rows and features along the columns.

batch_lab batch label vector.

use_parallel if TRUE, we do a parallel analysis over features, else serial application.

Value

Returns a counts data. with same dimension as the input data, but which is corrected for batch_lab.

Examples

```
# Simulation example
N=500;
K=4;
G=100;
Label.Batch=c(rep(1,N/4),rep(2,N/4),rep(3,N/4),rep(4,N/4));
alpha_true=matrix(rnorm((K)*G,0.5,1),nrow=(K));
library(gtools)
tt <- 10;
omega_true = matrix(rbind(rdirichlet(tt*10,c(3,4,2,6)),
                         rdirichlet(tt*10,c(1,4,6,3)),
                         rdirichlet(tt*10,c(4,1,2,2)),
                         rdirichlet(tt*10,c(2,6,3,2)),
                         rdirichlet(tt*10,c(3,3,5,4))), nrow=N);
B=max(Label.Batch);
sigmab_true=2;
beta_true=matrix(0,B,G);
for(g in 1:G)
    beta_true[,g]=rnorm(B,mean=0,sd=sigmab_true);
}
read_counts=matrix(0,N,G);
for(n in 1:N){
    for(g in 1:G)
    {
        read_counts[n,g]=rpois(1, omega_true[n,]%*%exp(alpha_true[,g]
                                                       + beta_true[Label.Batch[n],g]));
   }
}
batchcorrect_counts <- BatchCorrectedCounts(read_counts, Label.Batch,</pre>
                                      use_parallel=FALSE)
```

compare_omega

Re-ordering cluster membership proportion matrices and Information calculation

4 compare_omega

Description

This function computes a re-ordering of the clusters from GoM model fit in one model to make it comparable with that from another. The two models are applied on the same set of samples with same number of clusters, but the features may change from one model to another. The two models may not be of same type as well. One could be a DAPC model, the other a standard topic model. Aids in checking for consistency in topic proportion patterns across multiple GoM methods or across different types of feature sets.

Usage

```
compare_omega(omega1, omega2)
```

Arguments

omega1 cluster membership proportion matrix (N x K) from model 1
omega2 cluster membership proportion matrix (N x K) from model 2

Value

Returns a list containing

kl.dist A symmetric KL divergence matrix across the re-ordered clusters of two omega matrices

kl.order_model2_topics

re-ordering of the clusters for omega2 to match the clusters for omega1 based on KL divergence

kl.information_content

A measure based on KL information to record how much information in omega2 is explained by omega1. Varies from 0 to 1

cor.dist A correlation matrix across the re-ordered clusters of two omega matrices

cor.order_model2_topics

re-ordering of the clusters for omega2 to match the clusters for omega1 based on correlation information

cor.information_content

A measure based on correlation information to record how much information in omega2 is explained by omega1. Varies from 0 to 1

compGoM 5

compGoM

compGoM: compare GoM model fits across K or across different runs through log-likelihood, BIC and null loglikelihood

Description

This function takes the FitGoM/maptpx fitted model and computes log likelihood, BIC and null model loglikelihood for the fitted GoM models.

Usage

```
compGoM(data, model)
```

Arguments

data matrix on which GoM model is fitted (samples along rows, genes along columns)
model FitGoM ormaptpx::topics function output (either a class topics or a list of class topics).

Value

compGoM_models a vector list that returns the BIC and loglikelihood values for each of the fitted models in model.

```
read.data <- function() {</pre>
  x <- tempfile()</pre>
  download.file(paste0("https://cdn.rawgit.com/kkdey/",
                           "singleCellRNASeqMouseDeng2014",
                           "/master/data/Deng2014MouseEsc.rda"),
                 destfile = x, quiet = TRUE)
  z <- get(load((x)))</pre>
  return(z)
Deng2014MouseESC <-read.data()</pre>
# Extract observed counts
deng.counts <- Biobase::exprs(Deng2014MouseESC)</pre>
# Import GoM fitting results
data("MouseDeng2014.FitGoM")
names(MouseDeng2014.FitGoM)
compGoM(data = t(deng.counts),
           model = MouseDeng2014.FitGoM)
compGoM(data = t(deng.counts),
           model = MouseDeng2014.FitGoM$clust_3)
```

ex.counts

counts data for GTEx V6 Brain data for 200 genes

Description

counts data for GTEx V6 Brain data for 200 genes

Usage

ex.counts

Format

A data frame 1259 by 200 in dimensions

Value

A data frame 1259 by 200 in dimensions

ExtractHighCorFeatures

Extracting most highly correlated genes with GoM topics/clusters

Description

This function compares grades of membership profile for each cluster in GoM model fit with the data expression profile to identify genes that are mostly strongly associated with each topic.

Usage

ExtractHighCorFeatures(omega, data, num_genes = 100)

Arguments

omega omega matrix, the relative grades of memberships from the GoM model fitting

(a NxK matrix where N is number of samples, K number of topics).

data GxN matrix of the expression profile of genes across samples, where G is the

number of features and N number of samples

num_genes The number of top associated genes with each cluster. Defaults to 100

Value

A list containing two items - a $Kxnum_genes$ matrix of the top strongly associated/correlated indices/features for K clusters, and another $Kxnum_genes$ matrix of the absolute values of the correlations.

ExtractTopFeatures 7

Description

This function uses relative gene expression profile of the GoM clusters and applies a KL-divergence based method to obtain a list of top features that drive each of the clusters.

Usage

```
ExtractTopFeatures(theta, top_features = 10, method = c("poisson",
   "bernoulli"), options = c("min", "max"), shared = FALSE)
```

Arguments

theta	theta matrix, the relative gene expression profile of the GoM clusters (cluster probability distributions) from the GoM model fitting (a GxK matrix where G is number of features, K number of topics).
top_features	The top features in each cluster k that are selected based on the feature's ability to distinguish cluster k from cluster $1, \ldots, K$ for all cluster $k \neq l$. Default: 10.
method	The underlying model assumed for KL divergence measurement. Two choices considered are "bernoulli" and "poisson". Default: poisson.
options	if "min", for each cluster k, we select features that maximize the minimum KL divergence of cluster k against all other clusters for each feature. If "max", we select features that maximize the maximum KL divergence of cluster k against all other clusters for each feature.
shared	if TRUE, then we report genes that can be highly expressed in more than one cluster. Else, we stick to only those genes that are highest expressed only in a specific cluster.

Value

A matrix ($K \times top_features$) which tabulates in k-th row the top feature indices driving the cluster k.

```
data("MouseDeng2014.FitGoM")
theta_mat <- MouseDeng2014.FitGoM$clust_6$theta;
top_features <- ExtractTopFeatures(theta_mat, top_features=100, method="poisson", options="min");
top_features$indices
top_features$scores</pre>
```

8 FitGoM

FitGoM	Run Grade of Membership (GoM) model with multiple starting points !

Description

Fits grade of membership model FitGoM() to count data with multiple starting points and choose the best fit using BIC (Bayesian Information Criterion). the multiple starting points ensure that the output is more reliable.

Usage

```
FitGoM(data, K, tol = 0.1, num_trials = 1, options, path_rda = NULL,
  control = list())
```

Arguments

data	counts data NxG , with N , the number of samples along the rows and G , number of genes along columns.
K	the vector of clusters or topics to be fitted. Must be an integer, unlike in <code>]FitGom()</code> . So you need to apply this function separately for each K.
tol	Tolerance value for GoM model absolute log posterior increase at successive iterations (set to 0.1 as default).
num_trials	The number of trials with different starting points used.
options	the measure used to choose best fit, either "BF" or "BIC" measures can be used. BF is more trustworthy, but BIC can be used for better model comparison.
path_rda	The directory path for saving the GoM model output. If NULL, it will return the output to console.
control	Control parameters for the GoM model fits. Same as topics() function of maptpx package.

Value

Outputs the best GoM model fit output for cluster K and saves it at the directory path in path_rda if the latter is provided.

References

Matt Taddy. On Estimation and Selection for Topic Models. AISTATS 2012, JMLR W\&CP 22.

Pritchard, Jonathan K., Matthew Stephens, and Peter Donnelly. Inference of population structure using multilocus genotype data. Genetics 155.2 (2000): 945-959.

GTExV6Brain.FitGoM 9

GTExV6Brain.FitGoM

GoM model fit for GTEx V6 Brain bulk-RNA data

Description

GoM model fit for GTEx V6 Brain bulk-RNA data

Usage

GTExV6Brain.FitGoM

Format

A list of GoM model output for k=7

Value

A list of GoM model output for k=7

handleNA

Deal with NAs in the dataset!

Description

This function handles the NA values in the count data. If for a feature, the proportion of NAs is greater than threshold proportion, then we remove the feature, otherwise we use MAR substitution scheme using the distribution of the non NA values for the feature. If threshold proportion is 0, it implies removal of all features with NA values. Default value of threshold proportion is 0.

Usage

```
handleNA(data, thresh_prop = 0)
```

Arguments

data count data in a sample by feature matrix.

thresh_prop threshold proportion of NAs for removal of feature or replacing the NA values.

Details

This function removes NAs from the counts data

Value

Returns a list with

data The modified data with NA substitution and removal

na_removed_cols

The columns in the data with NAs that were removed

na_sub_cols The columns in the data with NAs that were substituted

Examples

```
mat <- rbind(c(2,4,NA),c(4,7,8),c(3,NA,NA));
handleNA(mat,thresh_prop=0.5)
handleNA(mat)</pre>
```

MouseDeng2014.FitGoM GoM model fit for Deng et al 2014 single cell RNA-seq data on mouse

Description

GoM model fit for Deng et al 2014 single cell RNA-seq data on mouse

Usage

MouseDeng2014.FitGoM

Format

A list of GoM model output for 6 clusters (k=2:7)

Value

A list of GoM model output for 6 clusters (k=2:7)

MouseJaitinSpleen.FitGoM

GoM model fit for Jaitin et al 2014 single cell RNA-seq data on mouse

Description

GoM model fit for Jaitin et al 2014 single cell RNA-seq data on mouse

Usage

MouseJaitinSpleen.FitGoM

Format

A list of GoM model output for k=7

Value

A list of GoM model output for k=7

nullmodel_GoM 11

nullmodel_GoM	Null models for Grade of Membership (GoM) cluster validation

Description

Use null models (popular in ecology) to generate randomized matrix of counts given the observed data matrix, fit the GoM model to these null matrices and compare the fit on null model data with that on the observed data. Used for validating the GoM clusters

Usage

```
nullmodel_GoM(counts, K, tol = 0.1, null.model = c("frequency", "richness",
   "independentswap", "trialswap"), iter_fill = 1000, iter_randomized = 100,
   plot = TRUE)
```

Arguments

counts The counts matrix (N x G): N- the number of samples, G- number of features

K The number of clusters to fit

tol The tolerance of the GoM model fitted

null.model The type of nullmodel used (similar to the randomizeMatrix() function argument

in picante package)

iter_fill The number of swaps/fills in each randomized matrix build

 $iter_randomized$

The number of randomization matrices generated

plot If TRUE, plots density of log Bayes factor

Value

Returns a list with

GoMBF.obs log BF for the observed counts with K=2 against the null with no clusters

GoMBF. rand a vector of log BF for each randomized count matrix with K=2 against the null

with no clusters

pval the p-value of the observed log Bayes factor against the ones from randomized

matrices

12 StructureGGplot

RemoveSparseFeatures Removes features with a lot of 0 counts

Description

This function deals with zero counts in the counts dataset. If for a feature, the proportion of zeros across the samples is greater than filter_prop, then we remove the feature.

Usage

```
RemoveSparseFeatures(data, filter_prop = 0.9)
```

Arguments

data count data in a sample by feature matrix.

filter_prop threshold proportion. If the proportion of zeros for the feature exceeds this

threshold then we remove the feature altogether. Default is 0.9.

Value

Returns a list with

```
data filtered data with sparse features removed sparse_features
```

the feature names of the features found sparse and removed

Examples

```
mat <- rbind(c(2,0,3,0,4),c(4,5,5,0,0),c(30,34,63,25,0),c(0,0,0,0));
RemoveSparseFeatures(mat, filter_prop = 0.5)
RemoveSparseFeatures(mat)
```

 ${\tt Structure GGplot}$

Struture plot using ggplot2

Description

Make the traditional Structure plot of GoM model with ggplot2

Usage

```
StructureGGplot(omega, annotation = NULL,
   palette = RColorBrewer::brewer.pal(8, "Accent"), figure_title = "",
   yaxis_label = "Tissue type", order_sample = TRUE,
   sample_order_decreasing = TRUE, sample_order_opts = 1,
   split_line = list(split_lwd = 1, split_col = "white"), plot_labels = TRUE,
   axis_tick = list(axis_ticks_length = 0.1, axis_ticks_lwd_y = 0.1,
   axis_ticks_lwd_x = 0.1, axis_label_size = 3, axis_label_face = "bold"),
   legend_title_size = 8, legend_key_size = 0.4, legend_text_size = 5)
```

StructureGGplot 13

Arguments

omega Cluster membership probabilities of each sample. Usually a sample by cluster matrix in the Topic model output. The cluster weights sum to 1 for each sample.

annotation data.frame of two columns: sample_id and tissue_label. sample_id is a vetor

consisting of character type of variable, which indicates the unique identifying number of each sample. tissue_label is a vector consisting of factor type of variable, which indicates the sample phenotype that is to be used in sorting and grouping the samples in the Structure plot; for example, tissue of origin in making Structure plot of the GTEx samples. Default is set to "none for when no

phenotype information is used to order the sample vectors.

palette Colors assigned to label the clusters. The first color in the palette is assigned

to the cluster that is labeled 1 (usually arbitrarily assigned during the clustering process). Note: The number of colors must be the same or greater than the number of clusters. When the number of clusters is greater than the number of colors, the clusters that are not assigned a color are filled with white in the figure. The recommended choice of color palette is RColorBrewer, for instance RColorBrewer::brewer.pal(8, "Accent") or RColorBrewwer::brewer.pal(9, "Set1").

figure_title Title of the plot.

yaxis_label Axis label for the phenotype used to order the samples, for example, tissue type

or cell type.

order_sample Whether to order the samples that are of the same tissue label or phenotype

lable, that is, having the same label in the tissue_label variable. If TRUE, we order samples that are of the same phenotype label and sort the samples by membership of most representative cluster. If FALSE, we keep the order in the

data.

sample_order_decreasing

If order_sample=TRUE, then order the sample in descending (TRUE) or ascend-

sample_order_opts

Orders by different choices of clusters in a batch. Can take the values 1, 2, 3 or

4 corresponding to 4 ordering options. Default equal to 1.

split_line Control parameters for the line that separates phenotype subgroups in the plot.

plot_labels If TRUE, the plot the axis labels.

axis_tick Control parameters for x-axis and y-axis tick sizes.

legend_title_size

The size of the title of the Structure Plot representation.

legend_key_size

The size of the legend key in Structure plot.

legend_text_size

the size specification of the legend text.

Value

Plots the Structure plot visualization of the GoM model

Examples

data("MouseDeng2014.FitGoM")

14 StructureGGplot

```
# extract the omega matrix: membership weights of each cell
names(MouseDeng2014.FitGoM$clust_6)
omega <- MouseDeng2014.FitGoM$clust_6$omega</pre>
tissue_label <- rownames(omega)</pre>
# make annotation matrix
annotation <- data.frame(</pre>
  sample_id = paste0("X", c(1:NROW(omega))),
  tissue_label = factor(rownames(omega),
                      levels = rev( c("zy", "early2cell",
                                      "mid2cell", "late2cell",
                                      "4cell", "8cell", "16cell",
                                      "earlyblast","midblast",
                                      "lateblast") ) ) )
head(annotation)
# setw rownames of omega to be sample ID
rownames(omega) <- annotation$sample_id</pre>
StructureGGplot(omega = omega,
                 annotation = annotation,
                 palette = RColorBrewer::brewer.pal(8, "Accent"),
                 yaxis_label = "development phase",
                 order_sample = TRUE,
                 axis_tick = list(axis_ticks_length = .1,
                                   axis\_ticks\_lwd\_y = .1,
                                   axis\_ticks\_lwd\_x = .1,
                                   axis_label_size = 7,
                                   axis_label_face = "bold"))
```

Index

*Topic GoM,	compGoM, 5
compGoM, 5	
*Topic Structure	ex.counts, 6
FitGoM, 8	ExtractHighCorFeatures, 6
*Topic batch	ExtractTopFeatures, 7
BatchCorrectedCounts, 2	-1 o
*Topic clustering ,	FitGoM, 8
FitGoM, 8	GTExV6Brain.FitGoM,9
*Topic clustering	GILXVODI AIII.I I LGOM, 9
handleNA, 9	handleNA, 9
*Topic counts	, >
BatchCorrectedCounts, 2	MouseDeng2014.FitGoM, 10
FitGoM, 8	MouseJaitinSpleen.FitGoM, 10
handleNA, 9	
RemoveSparseFeatures, 12	nullmodel_GoM, 11
*Topic data,	40
${\tt BatchCorrectedCounts, 2}$	RemoveSparseFeatures, 12
FitGoM, 8	Structure(Colot 12
handleNA, 9	StructureGGplot, 12
RemoveSparseFeatures, 12	
*Topic datasets	
AbundanceGoM, 2	
ex.counts, 6	
GTExV6Brain.FitGoM,9	
MouseDeng2014.FitGoM, 10	
MouseJaitinSpleen.FitGoM, 10	
*Topic effect	
BatchCorrectedCounts, 2	
*Topic extraction	
RemoveSparseFeatures, 12	
*Topic feature	
RemoveSparseFeatures, 12	
*Topic fit	
compGoM, 5	
*Topic model	
compGoM, 5	
*Topic plot	
FitGoM, 8	
AbundanceGoM, 2	
${\tt BatchCorrectedCounts}, 2$	
compare_omega, 3	