
Diagnostics for independent filtering: choosing filter statistic
and cutoff

Wolfgang Huber

European Molecular Biology Laboratory (EMBL)

genefilter version 1.50.0 (Last revision 2014-10-15 )

Contents

1 Introduction 1

2 Example data set 2

3 Qualitative assessment of the filter statistic 3

4 How to choose the filter statistic and the cutoff? 4
4.1 Choice of filtering cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Choice of filtering statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5 Some more plots pertinent to multiple testing 6
5.1 Joint distribution of filter statistic and p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Illustration of the Benjamini-Hochberg method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5.3 Schweder and Spjøtvoll plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Abstract

This vignette illustrates diagnostics that are intended to help with
• the choice of filter criterion and
• the choice of filter cutoff

in independent filtering [1]. The package genefilter provides functions that might be convenient for this purpose.

1 Introduction

Multiple testing approaches, with thousands of tests, are often used in analyses of genome-scale data. For instance,
in analyses of differential gene expression based on RNA-Seq or microarray data, a common approach is to apply a
statistical test, one by one, to each of thousands of genes, with the aim of identifying those genes that have evidence for
a statistical association of their expression measurements with the experimental covariate(s) of interest. Another instance
is differential binding detection from ChIP-Seq data. The idea of independent filtering is to filter out those tests from
the procedure that have no, or little chance of showing significant evidence, without even looking at their test statistic.
Typically, this results in increased detection power at the same experiment-wide type I error, as measured in terms of the
false discovery rate. A good choice for a filtering criterion is one that

1. is statistically independent from the test statistic under the null hypothesis,
2. is correlated with the test statistic under the alternative, and
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3. does not notably change the dependence structure –if there is any– of the joint test statistics (including those
corresponding to true nulls and to true alternatives).

The benefit from filtering relies on property 2, and I will explore that further in Section 3. The statistical validity of filtering
relies on properties 1 and 3. For many practically useful combinations of filter criteria with test statistics, property 1 is
easy to prove (e. g., through Basu’s theorem). Property 3 is more complicated, but rarely presents a problem in practice:
if, for the multiple testing procedure that is being used, the correlation structure of the tests was acceptable without
filtering, the filtering should not change that. Please see [1] for further discussion on the mathematical and conceptual
background.

2 Example data set

For illustration, let us use the pasillaGenes dataset from the Bioconductor package pasilla; this is an RNA-Seq dataset
from which we extract gene-level read counts for two replicate samples the were measured for each of two biological
conditions: normally growing cells and cells treated with dsRNA against the Pasilla mRNA, which led to RNAi interference
(RNAi) mediated knockdown of the Pasilla gene product.

library("pasilla")

data("pasillaGenes")

We perform a standard analysis with DESeq to look for genes that are differentially expressed between the normal
and Pasilla-knockdown conditions, indicated by the factor variable condition. In the generalized linear model (GLM)
analysis, we adjust for an additional experimental covariate type, which is however not of interest for the differential
expression. For more details, please see the vignette of the DESeq package.

library("DESeq")

cds = estimateSizeFactors( pasillaGenes )

cds = estimateDispersions( cds )

fit1 = fitNbinomGLMs( cds, count ~ type + condition )

fit0 = fitNbinomGLMs( cds, count ~ type )

res = data.frame(

filterstat = rowMeans(counts(cds)),

pvalue = nbinomGLMTest( fit1, fit0 ),

row.names = featureNames(cds) )

The details of the anove analysis are not important for the purpose of this vignette, the essential output is contained in
the columns of the dataframe res:

• filterstat: the filter statistic, here the average number of counts per gene across all samples, irrespective of
sample annoation,

• pvalue: the test p-values,

Each row of the dataframe corresponds to one gene:

dim(res)

## [1] 14470 2

head(res)

## filterstat pvalue

## FBgn0000003 0.143 0.4601

## FBgn0000008 54.714 0.9747

## FBgn0000014 0.429 0.8395

## FBgn0000015 0.857 0.7274

## FBgn0000017 2507.429 0.0963
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## FBgn0000018 239.286 0.6794

3 Qualitative assessment of the filter statistic

First, consider Figure 1, which shows that among the approximately 40% of genes with lowest overall counts, filterstat,
there are essentially none that achieved an (unadjusted) p-value less than 0.003 (this corresponds to about 2.5 on the
− log10-scale).

with(res,

plot(rank(filterstat)/length(filterstat), -log10(pvalue), pch=16, cex=0.45))

trsf = function(n) log10(n+1)

plot(ecdf(trsf(res$filterstat)), xlab=body(trsf), main="")

Figure 1: Left: scatterplot of the rank (scaled to [0, 1]) of the filter criterion filterstat (x-axis) versus the negative log-
arithm of the test pvalue (y-axis). Right: the empirical cumulative distribution function (ECDF) shows the relationships
between the values of filterstat and its quantiles.

This means that by dropping the 40% genes with lowest filterstat, we do not loose anything substantial from our
subsequent results.

For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a decimal
number. The analogous scatterplot to that of Figure 1 is shown in Figure 2.

badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res)))

plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45)
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Figure 2: Scatterplot analogous to Figure 1, but with badfilter.

4 How to choose the filter statistic and the cutoff?

The filtered p function in the genefilter package calculates adjusted p-values over a range of possible filtering thresh-
olds. Here, we call this function on our results from above and compute adjusted p-values using the method of Benjamini
and Hochberg (BH) for a range of different filter cutoffs.

library("genefilter")

theta = seq(from=0, to=0.5, by=0.1)

pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

head(pBH)

## 0% 10% 20% 30% 40% 50%

## [1,] 0.895 0.895 0.895 NA NA NA

## [2,] 0.997 0.997 0.997 0.998 0.995 0.993

## [3,] 0.981 0.981 0.981 NA NA NA

## [4,] 0.960 0.960 0.960 0.970 NA NA

## [5,] 0.593 0.593 0.593 0.517 0.452 0.412

## [6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns to the BH-adjusted p-values for
the different possible choices of cutoff theta. A value of NA indicates that the gene was filtered out at the corresponding
filter cutoff. The rejection plot function takes such a matrix and shows how rejection count (R) relates to the choice
of cutoff for the p-values. For these data, over a reasonable range of FDR cutoffs, increased filtering corresponds to
increased rejections.

rejection_plot(pBH, at="sample",

xlim=c(0, 0.5), ylim=c(0, 2000),
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Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as differentially expressed) as a function
of the FDR threshold (x-axis) and the filtering cutoff θ (line colours, specified as quantiles of the distribution of the
filter statistic). The plot is produced by the rejection plot function. Note that the lines for θ = 0% and 10% are
overplotted by the line for θ = 20%, since for the data shown here, these quantiles correspond all to the same set of
filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of θ.

xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cutoff

If we select a fixed cutoff for the adjusted p-values, we can also look more closely at the relationship between the fraction
of null hypotheses filtered and the total number of discoveries. The filtered R function wraps filtered p and just
returns rejection counts. It requires you to choose a particular p-value cutoff, specified through the argument alpha.

theta = seq(from=0, to=0.8, by=0.02)

rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and true
null hypotheses, very large values of θ reduce power in this example:

plot(theta, rejBH, type="l",

xlab=expression(theta), ylab="number of rejections")

The plot is shown in the right panel of Figure 3.

4.2 Choice of filtering statistic

We can use the analysis of the previous section 4.1 also to inform ourselves about different possible choices of filter
statistic. We construct a dataframe with a number of different choices.
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Figure 4: The number of rejections at FDR=10% as a function of θ (analogous to the right panel in Figure 3) for a
number of different choices of the filter statistic.

filterChoices = data.frame(

`mean` = res$filterstat,

`geneID` = badfilter,

`min` = rowMin(counts(cds)),

`max` = rowMax(counts(cds)),

`sd` = rowSds(counts(cds))

)

rejChoices = sapply(filterChoices, function(f)

filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH"))

library("RColorBrewer")

myColours = brewer.pal(ncol(filterChoices), "Set1")

matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2,

xlab=expression(theta), ylab="number of rejections")

legend("bottomleft", legend=colnames(filterChoices), fill=myColours)

The result is shown in Figure 4. It indicates that for the data at hand, mean, max and sd provide similar performance,
whereas the other choices are less effective.

5 Some more plots pertinent to multiple testing

5.1 Joint distribution of filter statistic and p-values

The left panel of Figure 1 shows the joint distribution of filter statistic and p-values. An alternative, perhaps simpler view
is provided by the p-value histograms in Figure 5. It shows how the filtering ameliorates the multiple testing problem –
and thus the severity of a multiple testing adjustment – by removing a background set of hypotheses whose p-values are
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distributed more or less uniformly in [0, 1].

h1 = hist(res$pvalue[!pass], breaks=50, plot=FALSE)

h2 = hist(res$pvalue[pass], breaks=50, plot=FALSE)

colori <- c(`do not pass`="khaki", `pass`="powderblue")

barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))
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Figure 5: Histogram of p-values for all tests. The area shaded in blue indicates the subset of those that pass the filtering,
the area in khaki those that do not pass.

5.2 Illustration of the Benjamini-Hochberg method

The Benjamini-Hochberg multiple testing adjustment procedure [2] has a simple graphical illustration, which is produced
in the following code chunk. Its result is shown in the left panel of Figure 6.

resFilt = res[pass,]

orderInPlot = order(resFilt$pvalue)

showInPlot = (resFilt$pvalue[orderInPlot] <= 0.06)

alpha = 0.1

plot(seq(along=which(showInPlot)), resFilt$pvalue[orderInPlot][showInPlot],

pch=".", xlab = expression(rank(p[i])), ylab=expression(p[i]))

abline(a=0, b=alpha/length(resFilt$pvalue), col="red3", lwd=2)
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5.3 Schweder and Spjøtvoll plot

Schweder and Spjøtvoll [3] suggested a diagnostic plot of the observed p-values which permits estimation of the fraction
of true null hypotheses. For a series of hypothesis tests H1, . . . ,Hm with p-values pi, they suggested plotting

(1− pi, N(pi)) for i ∈ 1, . . . ,m, (1)

where N(p) is the number of p-values greater than p. An application of this diagnostic plot to resFilt$pvalue is
shown in the right panel of Figure 6. When all null hypotheses are true, the p-values are each uniformly distributed in
[0, 1], Consequently, the cumulative distribution function of (p1, . . . , pm) is expected to be close to the line F (t) = t. By
symmetry, the same applies to (1− p1, . . . , 1− pm). When (without loss of generality) the first m0 null hypotheses are
true and the other m−m0 are false, the cumulative distribution function of (1− p1, . . . , 1− pm0) is again expected to
be close to the line F0(t) = t. The cumulative distribution function of (1 − pm0+1, . . . , 1 − pm), on the other hand, is
expected to be close to a function F1(t) which stays below F0 but shows a steep increase towards 1 as t approaches 1.
In practice, we do not know which of the null hypotheses are true, so we can only observe a mixture whose cumulative
distribution function is expected to be close to

F (t) =
m0

m
F0(t) +

m−m0

m
F1(t). (2)

Such a situation is shown in the right panel of Figure 6. If F1(t)/F0(t) is small for small t, then the mixture fraction m0

m
can be estimated by fitting a line to the left-hand portion of the plot, and then noting its height on the right. Such a fit
is shown by the red line in the right panel of Figure 6.

plot(1-resFilt$pvalue[orderInPlot],

(length(resFilt$pvalue)-1):0, pch=".", xaxs="i", yaxs="i",

xlab=expression(1-p[i]), ylab=expression(N(p[i])))

abline(a=0, slope, col="red3", lwd=2)

abline(h=slope)

text(x=0, y=slope, labels=paste(round(slope)), adj=c(-0.1, 1.3))

Session information

• R version 3.2.0 (2015-04-16), x86_64-unknown-linux-gnu
• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils
• Other packages: Biobase 2.28.0, BiocGenerics 0.14.0, DESeq 1.20.0, RColorBrewer 1.1-2, genefilter 1.50.0,

knitr 1.9, lattice 0.20-31, locfit 1.5-9.1, pasilla 0.7.1
• Loaded via a namespace (and not attached): AnnotationDbi 1.30.0, BiocStyle 1.6.0, DBI 0.3.1,

GenomeInfoDb 1.4.0, IRanges 2.2.0, RSQLite 1.0.0, S4Vectors 0.6.0, XML 3.98-1.1, annotate 1.46.0,
codetools 0.2-11, digest 0.6.8, evaluate 0.6, formatR 1.1, geneplotter 1.46.0, grid 3.2.0, highr 0.4.1, splines 3.2.0,
stats4 3.2.0, stringr 0.6.2, survival 2.38-1, tools 3.2.0, xtable 1.7-4
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Figure 6: Left: illustration of the Benjamini-Hochberg multiple testing adjustment procedure [2]. The black line shows
the p-values (y-axis) versus their rank (x-axis), starting with the smallest p-value from the left, then the second smallest,
and so on. Only the first 1503 p-values are shown. The red line is a straight line with slope α/n, where n = 8647 is the
number of tests, and α = 0.1 is a target false discovery rate (FDR). FDR is controlled at the value α if the genes are
selected that lie to the left of the rightmost intersection between the red and black lines: here, this results in 796 genes.
Right: Schweder and Spjøtvoll plot, as described in the text.
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