EnrichmentBrowser: Seamless navigation through combined results of set-based and network-based enrichment analysis

Ludwig Geistlinger

August 31, 2015

Contents

1 Introduction 1
2 Reading expression data from file 2
3 Types of expression data 3
3.1 Microarray data 3
3.2 RNA-seq data 4
4 Normalization 5
5 Differential expression 6
6 Set-based enrichment analysis 8
7 Network-based enrichment analysis 11
8 Combining results 13
9 Putting it all together 14

1 Introduction

The EnrichmentBrowser package implements essential functionality for the enrichment analysis of gene expression data. The analysis combines the advantages of set-based and network-based enrichment analysis in order to derive high-confidence gene sets and biological pathways that are differentially regulated in the expression data under investigation. Besides, the package facilitates the visualization and exploration of such sets and pathways.
The following instructions will guide you through an end-to-end expression data analysis workflow including:

1. Preparing the data
2. Preprocess the data
3. Differential expression (DE) analysis
4. Defining gene sets of interest
5. Executing individual enrichment methods
6. Combining the results of different methods
7. Visualize and explore the results

All of these steps are modular, i.e. each step can be executed individually and fine-tuned with several parameters. In case you are interested only in a particular step, you are advised to directly jump to the respective section (Let's say, for example, you are at the point where you have differential expression calculated for each gene. Now you are interested whether certain gene functions are enriched for differential regulation. Section Set-based enrichment analysis would then be the one you should go for). The last section Putting it all together also demonstrates how to wrap the whole workflow into a single function, making use of suitably chosen defaults.

2 Reading expression data from file

Typically, the expression data is not already available in R but rather has to be read in from file. This can be done using the function read.eset, which reads the expression data (exprs) along with the phenotype data (pData) and feature data (fData) into an ExpressionSet.
> library(EnrichmentBrowser)
> data.dir <- system.file("extdata", package="EnrichmentBrowser")
> exprs.file <- file.path(data.dir, "exprs.tab")
> pdat.file <- file.path(data.dir, "pData.tab")
> fdat.file <- file.path(data.dir, "fData.tab")
> eset <- read.eset (exprs.file, pdat.file, fdat.file)
The man pages provide details on file format and the ExpressionSet data structure.
> ?read.eset
> ?ExpressionSet

3 Types of expression data

The two major data types processed by the EnrichmentBrowser are microarray (intensity measurements) and RNA-seq (read counts) data.

3.1 Microarray data

To demonstrate the functionality of the package for microarray data, we consider expression measurements of patients suffering from acute lymphoblastic leukemia [1]. A frequent chromosomal defect found among these patients is a translocation, in which parts of chromosome 9 and 22 swap places. This results in the oncogenic fusion gene $B C R / A B L$ created by positioning the ABL1 gene on chromosome 9 to a part of the BCR gene on chromosome 22.
We load the $A L L$ dataset

```
> library(ALL)
> data(ALL)
```

and select B-cell ALL patients with and without the BCR/ABL fusion as it has been described previously [2].

```
> ind.bs <- grep("^B", ALL$BT)
> ind.mut <- which(ALL$mol.biol %in% c("BCR/ABL", "NEG"))
> sset <- intersect(ind.bs, ind.mut)
> all.eset <- ALL[, sset]
```

We can now access the expression values, which are intensity measurements on a log-scale for 12,625 probes (rows) across 79 patients (columns).

```
> dim(all.eset)
Features Samples
    12625 79
> exprs(all.eset)[1:4,1:4]
            01005 01010 03002 04007
1000_at 7.597323 7.479445 7.567593 7.905312
1001_at 5.046194 4.9325374.799294 4.844565
1002_f_at 3.900466 4.208155 3.886169 3.416923
1003_s_at 5.903856 6.169024 5.860459 5.687997
```

As we often have more than one probe per gene, we compute gene expression values as the average of the corresponding probe values.

```
> all.eset <- probe.2.gene.eset(all.eset)
> head(featureNames(all.eset))
```

```
[1] "5595" "7075" "1557" "643" "1843" "4319"
```

(Note, that the mapping from probe to gene is done automatically as long as as you have the corresponding annotation package, here the hgu95av2.db package, installed. Otherwise, the mapping can be defined in the fData slot.)

```
> head(fData(eset))
```

	PROBEID	ENTREZID
1000_at	1000_at	5595
1010_at	1010_at	5600
1011_s_at	1011_s_at	7531
1013_at	1013_at	4090
1018_at	1018_at	7480
1019_g_at	1019_g_at	7480

3.2 RNA-seq data

To demonstrate the functionality of the package for RNA-seq data, we consider transcriptome profiles of four primary human airway smooth muscle cell lines in two conditions: control and treatment with dexamethasone [3].
We load the airway dataset
> library(airway)
> data(airway)
and create the ExpressionSet (for further analysis, we remove genes with very low read counts and measurements that are not mapped to an ENSEMBL gene ID).

```
> expr <- assays(airway)[[1]]
> expr <- expr[grep("`ENSG", rownames(expr)),]
> expr <- expr[rowMeans(expr) > 10,]
> air.eset <- new("ExpressionSet", exprs=expr, annotation="hsa")
> dim(air.eset)
```

Features Samples
160558
> exprs(air.eset) [1:4,1:4]

	SRR1039508	SRR1039509	SRR1039512	SRR1039513
ENSG00000000003	679	448	873	408
ENSG00000000419	467	515	621	365
ENSG00000000457	260	211	263	164
ENSGO0000000460	60	55	40	35

4 Normalization

Normalization of high-throughput expression data is essential to make results within and between experiments comparable. Microarray (intensity measurements) and RNA-seq (read counts) data exhibit typically distinct features that need to be normalized for. The function normalize wraps commonly used funtionality from limma for microarray normalization and from EDASeq for RNA-seq normalization. For specific needs that deviate from these standard normalizations, the user should always refer to more specific functions/packages.
Microarray data is expected to be single-channel. For two-color arrays, it is expected here that normalization within arrays has been already carried out, e.g. using normalizeWithinArrays from limma.

A default quantile normalization based on normalizeBetweenArrays from limma can be carried out via

```
> before.norm <- exprs(all.eset)
> all.eset <- normalize(all.eset, norm.method="quantile")
> after.norm <- exprs(all.eset)
> par(mfrow=c(1,2))
> boxplot(before.norm)
> boxplot(after.norm)
```


Note that this is done here for demonstration purpose only, as the ALL data has been already rma-normalized from the authors of the ALL dataset.
RNA-seq data is expected to be raw read counts. Please note that normalization for downstream DE analyis, e.g. with edgeR and DESeq2, is not ultimately necessary (and in some cases even discouraged) as many of these tools implement specific normalization approaches themselves. See the vignette of EDASeq, edgeR, and DESeq2 for details. In case normalization is desired, between-lane normalization to adjust for sequencing depth, can be carried out as demonstrated above for microarray data.

```
> norm.air <- normalize(air.eset, norm.method="quantile")
```

Within-lane normalization to adjust for gene specific effects such as gene length and GC content effect requires to retrieve this information first. Using precomputed information for all genes, normalization within and between lanes can then be carried out via

```
> lgc.file <- file.path(data.dir, "air_lgc.tab")
> fData(air.eset) <- read.delim(lgc.file)
> norm.air <- normalize(air.eset, within=TRUE)
```


5 Differential expression

Differential expression analysis between sample groups can be performed using the function de.ana. As a prerequisite, the phenotype data should contain for each patient a binary group assignment. For the ALL dataset this indicates whether the BCR-ABL gene fusion is present (1) or not (0).

```
> pData(all.eset)$GROUP <- ifelse(all.eset$mol.biol == "BCR/ABL", 1, 0)
> table(pData(all.eset)$GROUP)
    0 1
42 37
```

For the airway dataset this indicates whether the cell lines have been treated with dexamethasone (1) or not (0).

```
> pData(air.eset)$GROUP <- ifelse(colData(airway)$dex == "trt", 1, 0)
> table(pData(air.eset)$GROUP)
0 1
4
```

Paired samples, or in general sample batches/blocks, can be defined via a BLOCK column in the pData slot. For the airway dataset the sample blocks correspond to the four different cell lines.

```
> pData(air.eset)$BLOCK <- colData(airway)$cell
> table(pData(air.eset)$BLOCK)
N052611 N061011 N080611 N61311
    2 2 2
```

For microarray expression data, the de.ana function carries out a differential expression analysis between the two groups based on functionality from the limma package. Resulting fold changes and t-test derived p-values for each gene are appended to the fData slot.

```
> all.eset <- de.ana(all.eset)
> head(fData(all.eset), n=4)
    FC ADJ.PVAL limma.STAT
5595 0.03880062 0.8615759 0.6590223
7075 0.01728855 0.9586440
1557-0.05077699 0.6834371-1.2800690
643-0.03063333 0.8604024-0.6647103
```

Raw p-values are already corrected for multiple testing (ADJ.PVAL) using the method from Benjamini and Hochberg implemented in the function p.adjust from the stats package.
To get a first overview, we inspect the p-value distribution and the volcano plot (fold change against p-value).

```
> par(mfrow=c(1,2))
> pdistr(fData(all.eset)$ADJ.PVAL)
> volcano(fData(all.eset)$FC, fData(all.eset)$ADJ.PVAL)
```


The expression change of highest statistical significance is observed for the ENTREZ gene 7525.

```
> fData(all.eset)[ which.min(fData(all.eset)$ADJ.PVAL), ]
    FC ADJ.PVAL limma.STAT
7525 1.421689 5.944619e-06 7.019049
```

This turns out to be the YES proto-oncogene 1 (hsa:7525@KEGG).
For RNA-seq data, the de. ana function carries out a differential expression analysis between the two groups either based on functionality from limma (that includes the voom transformation), or alternatively, from the popular edgeR or DESeq2 package. We use here the analysis based on edgeR for demonstration.

```
> air.eset <- de.ana(air.eset, de.method="edgeR")
> head(fData(air.eset), n=4)
\begin{tabular}{lrrrrr} 
& length & gc & FC & ADJ.PVAL & edgeR.STAT \\
ENSG00000000003 & 8000 & 0.4095000 & -0.38981443 & 0.0002054395 & 17.4402380 \\
ENSG000000000419 & 23656 & 0.3982076 & 0.19817371 & 0.1083585316 & 4.0864371 \\
ENSG00000000457 & 40886 & 0.4025339 & 0.02971155 & 0.8808403672 & 0.0638300 \\
ENSG000000000460 & 190985 & 0.3923816 & -0.11753938 & 0.7193511341 & 0.3135965
\end{tabular}
```

Now, we subject the ALL and the airway gene expression data to the enrichment analysis.

6 Set-based enrichment analysis

In the following, we introduce how the EnrichmentBrowser package can be used to perform state-of-the-art enrichment analysis of gene sets. We consider the ALL and the airway gene expression data as processed in the previous sections. We are now interested whether there are not only single genes that are differentially expressed, but also sets of genes known to work together, e.g. as defined in the Gene Ontology or the KEGG pathway annotation.
The function get.kegg.genesets, which is based on functionality from the KEGGREST package, downloads all KEGG pathways for a chosen organism as gene sets.

```
> kegg.gs <- get.kegg.genesets("hsa")
```

Analogously, the function get.go.genesets defines GO terms of a selected ontology as gene sets.

```
> go.gs <- get.go.genesets(org="hsa", onto="BP", mode="GO.db")
```

User-defined gene sets can be parsed from the GMT file format

```
> gmt.file <- file.path(data.dir, "hsa_kegg_gs.gmt")
> hsa.gs <- parse.genesets.from.GMT(gmt.file)
> length(hsa.gs)
```

[1] 39
>hsa.gs[1:2]
\$hsa05416_Viral_myocarditis

[1]	"100509457"	"101060835"	"1525"	"1604"	"1605"	"1756"	"1981"
[8]	"1982"	"25"	"2534"	"27"	"3105"	"3106"	"3107"
[15]	"3108"	"3109"	"3111"	"3112"	"3113"	"3115"	"3117"
[22]	"3118"	"3119"	"3122"	"3123"	"3125"	"3126"	"3127"
[29]	"3133"	"3134"	"3135"	"3383"	"3683"	"3689"	"3908"
[36]	"4624"	"4625"	"54205"	"5551"	"5879"	"5880"	"5881"
[43]	"595"	"60"	"637"	"6442"	"6443"	"6444"	"6445"
[50]	"71"	"836"	"841"	"842"	"857"	"8672"	"940"
[57]	"941"	"942"	"958"	"959"			

\$`hsa04622_RIG-I-like_receptor_signaling_pathway`

| [1] "10010" | "1147" | "1432" | "1540" | "1654" | "23586" | "26007" | "29110" |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | "338376"

Currently, the following set-based enrichment analysis methods are supported

```
> sbea.methods()
```

[1] "ora" "safe" "gsea" "samgs"

- ORA: Overrepresentation Analysis (simple and frequently used test based on the hypergeometric distribution [4] for a critical review)
- SAFE: Significance Analysis of Function and Expression (generalization of ORA, includes other test statistics, e.g. Wilcoxon's rank sum, and allows to estimate the significance of gene sets by sample permutation; implemented in the safe package)
- GSEA: Gene Set Enrichment Analysis (frequently used and widely accepted, uses a Kolmogorov-Smirnov statistic to test whether the ranks of the p-values of genes in a gene set resemble a uniform distribution [5])
- SAMGS: Significance Analysis of Microarrays on Gene Sets (extending the SAM method for single genes to gene set analysis [6])

For demonstration we perform here a basic ORA choosing a significance level α of 0.05 .

ORA - Table of Results

Figure 1: ORA result view. For each significant gene set in the ranking, the user can select to view (1) a gene report, that lists all genes of a set along with fold change and derived p-value, (2) interactive overview plots, such as heatmap, p-value distribution, and volcano plot, (3) the pathway in KEGG with differentially expressed genes highlighted in red.

```
> sbea.res <- sbea(method="ora", eset=all.eset, gs=hsa.gs, perm=0, alpha=0.05)
> gs.ranking(sbea.res)
DataFrame with }5\mathrm{ rows and 4 columns
    GENE.SET NR.GENES NR.SIG.GENES P.VALUE
    <character> <numeric> <numeric> <numeric>
1 hsa04622_RIG-I-like_receptor_signaling_pathway 5 0.00888
2 hsa05130_Pathogenic_Escherichia_coli_infection 4 0.01400
3 hsa04520_Adherens_junction 68 0.02610
4 hsa05206_MicroRNAs_in_cancer 

The result of every enrichment analysis is a ranking of gene sets by the corresponding \(p\)-value. The gs.ranking function displays only those gene sets satisfying the chosen significance level \(\alpha\).
While such a ranked list is the standard output of existing enrichment tools, the functionality of the EnrichmentBrowser package allows visualization and interactive exploration of resulting gene sets far beyond that point. Using the ea.browse function creates a HTML summary from which each gene set can be inspected in more detail (this builds on functionality from the ReportingTools package). The various options are described in Figure 1.
```

> ea.browse(sbea.res)

```

The goal of the EnrichmentBrowser package is to provide the most frequently used enrichment methods. However, it is also possible to exploit its visualization capabilities while using one's own set-based enrichment method. This requires to implement a function that takes the characteristical arguments eset (expression data), gs (gene sets), alpha (significance level), and perm (number of permutations). In addition, it must return a numeric vector ps storing the resulting \(p\)-value for each gene set in gs. The \(p\)-value vector must be also named accordingly (i.e. names (ps) == names(gs)).
Let us consider the following dummy enrichment method, which randomly renders five gene sets significant and all others insignificant.
```

> dummy.sbea <- function(eset, gs, alpha, perm)

+ {
+ sig.ps <- sample(seq(0,0.05, length=1000),5)

```

EnrichmentBrowser: Seamless navigation through combined
results of set-based and network-based enrichment analysis
```

+ insig.ps <- sample(seq(0.1,1, length=1000), length(gs)-5)
+ ps <- sample(c(sig.ps, insig.ps), length(gs))
+ names(ps) <- names(gs)
+ return(ps)
+ }

```

We can plug this method into sbea as before.
```

> sbea.res2 <- sbea(method=dummy.sbea, eset=all.eset, gs=hsa.gs)
> gs.ranking(sbea.res2)

```
DataFrame with 5 rows and 2 columns
    GENE.SET P.VALUE
    <character> <numeric>
    hsa04550_Signaling_pathways_regulating_pluripotency_of_stem_cells 0.0022
2 hsa04622_RIG-I-like_receptor_signaling_pathway
                hsa03410_Base_excision_repair 0.0139
    hsa05410_Hypertrophic_cardiomyopathy_(HCM) 0.0321
        hsa04210_Apoptosis 0.0433

\section*{7 Network-based enrichment analysis}

Having found sets of genes that are differentially regulated in the ALL data, we are now interested whether these findings can be supported by known regulatory interactions. For example, we want to know whether transcription factors and their target genes are expressed in accordance to the connecting regulations. Such information is usually given in a gene regulatory network derived from specific experiments, e.g. using the GeneNetworkBuilder, or compiled from the literature ([7] for an example). There are well-studied processes and organisms for which comprehensive and well-annotated regulatory networks are available, e.g. the RegulonDB for E. coli and Yeastract for S. cerevisiae. However, in many cases such a network is missing. A first simple workaround is to compile a network from regulations in the KEGG database.
We can download all KEGG pathways of a specified organism via the download.kegg.pathways function that exploits functionality from the KEGGREST package.
> pwys <- download.kegg.pathways("hsa")
In this case, we have already downloaded all human KEGG pathways. We parse them making use of the KEGGgraph package and compile the resulting gene regulatory network.
```

> pwys <- file.path(data.dir, "hsa_kegg_pwys.zip")
> hsa.grn <- compile.grn.from.kegg(pwys)
> head(hsa.grn)

```
\begin{tabular}{clll} 
& FROM & TO & TYPE \\
{\([1]\),} & \(" 3569 "\) & \(" 3570 "\) & \("+"\) \\
{\([2]\),} & \(" 3458 "\) & \(" 3459 "\) & \("+"\) \\
{\([3]\),} & \(" 3458 "\) & \(" 3460 "\) & \("+"\) \\
{\([4]\),} & \(" 1950 "\) & \(" 1956 "\) & \("+"\) \\
{\([5]\),} & \(" 1950 "\) & \(" 2064 "\) & \("+"\) \\
{\([6]\),} & \(" 1950 "\) & \(" 3480 "\) & \("+"\)
\end{tabular}

Now we are able to perform enrichment analysis based on the compiled network. Currently the following network-based enrichment analysis methods are supported
```

> nbea.methods()

```
[1] "ggea" "nea" "spia" "pathnet"
- GGEA: Gene Graph Enrichment Analysis (evaluates consistency of known regulatory interactions with the observed expression data [8])
- SPIA: Signaling Pathway Impact Analysis (implemented in the SPIA package)
- NEA: Network Enrichment Analysis (implemented in the neaGUI package)
- PathNet: Pathway Analysis using Network Information (implemented in the PathNet package)

For demonstration we perform here GGEA using the gene regulatory network compiled above.
```

> nbea.res <- nbea(method="ggea", eset=all.eset, gs=hsa.gs, grn=hsa.grn)
> gs.ranking(nbea.res)
DataFrame with }3\mathrm{ rows and 5 columns
GENE.SET NR.RELS RAW.SCORE NORM.SCORE P.VALUE
<character> <numeric> <numeric> <numeric> <numeric>
1 hsa05416_Viral_myocarditis 0

2 hsa04390_Hippo_signaling_pathway \quad	61	21.70	0.356	0.012

| 3 | hsa04210_Apoptosis | 20 | 7.69 | 0.385 | 0.017 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

```

The resulting ranking lists for each statistically significant gene set the number of relations (NR.RELS) of the given gene regulatory network that involve a gene set member, the sum of consistencies over all relations (RAW.SCORE), the score normalized by induced network size (NORM.SCORE = RAW.SCORE / NR.RELS), and the statistical significance of each gene set based on a permutation approach.
A GGEA graph for a gene set of interest depicts the consistency of each interaction in the network that involves a gene set member. Nodes (genes) are colored according to expression (up-/down-regulated) and edges (interactions) are colored according to consistency, i.e. how well the interaction type (activation/inhibition) is reflected in the correlation of the observed expression of both interaction partners.

EnrichmentBrowser: Seamless navigation through combined results of set-based and network-based enrichment analysis
```

> par(mfrow=c(1,2))
> ggea.graph(

+ gs=hsa.gs[["hsa05217_Basal_cell_carcinoma"]],
+ grn=hsa.grn, eset=all.eset)
> ggea.graph.legend()

```


GGEA graph legend

NODE COLORS
up-regulated
down-regulated
(the clearer the color appears, the more significant i
EDGE COLORS
consistent (red)
inconsistent (blue) \(\qquad\)
(the clearer the color appears, the more significant i
EDGE TYPES
activation
inhibition

As described in the previous section it is also possible to plug in one's own network-based enrichment method.

\section*{8 Combining results}

Different enrichment analysis methods usually result in different gene set rankings for the same dataset. To compare results and detect gene sets that are supported by different methods, the EnrichmentBrowser package allows to combine results from the different set-based and network-based enrichment analysis methods. The combination of results yields a new ranking of the gene sets under investigation by e.g. the average rank across methods.
We consider the ORA result and the GGEA result from the previous sections and use the function comb.ea.results.
> res.list <- list(sbea.res, nbea.res)
> comb.res <- comb.ea.results (res.list)
The combined result can be detailedly inspected as before and interactively ranked as depicted in Figure 2.
> ea.browse(comb.res, graph.view=hsa.grn, nr.show=5)

\section*{COMB - Table of Results}


Figure 2: Combined result view. By clicking on one of the columns (ORA.RANK, ..., GGEA.PVAL) the result can be interactively ranked according to the selected criterion.

\section*{9 Putting it all together}

There are cases where it is necessary to perform some steps of the demonstrated enrichment analysis pipeline individually. However, often it is more convenient to run the complete standardized pipeline. This can be done using the all-in-one wrapper function ebrowser. Thus, in order to produce the result page displayed in Figure 2 from scratch, without going through the individual steps listed above, the following call would do the job.
```

> ebrowser(meth=c("ora", "ggea"),

+ exprs=exprs.file, pdat=pdat.file, fdat=fdat.file,
+ org="hsa", gs=hsa.gs, grn=hsa.grn, comb=TRUE, nr.show=5)

```

\section*{References}
[1] Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, and et al. Gene expression profile of adult t-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood, 103(7):2771-8, 2004.
[2] Gentleman R, Carey V, Huber W, Irizarry R, and Dudoit S. Bioinformatics and computational biology solutions using \(r\) and bioconductor. Springer, New York, 2005.
[3] Himes BE, Jiang X, Wagner P, Hu R, Wang Q, and et al. Rna-seq transcriptome profiling identifies crispld2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One, 9(6):e99625, 2014.
[4] Goeman JJ and Buehlmann P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics, 23(8):980-7, 2007.
[5] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, and et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA, 102(43):15545-50, 2005.
[6] Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, and et al. Improving gene set analysis of microarray data by sam-gs. BMC Bioinformatics, 8:242, 2007.
[7] Geistlinger L, Csaba G, Dirmeier S, Kueffner R, and Zimmer R. A comprehensive gene regulatory network for the diauxic shift in saccharomyces cerevisiae. Nucleic Acids Res, 41(18):8452-63, 2013.
[8] Geistlinger L, Csaba G, Kueffner R, Mulder N, and Zimmer R. From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics, 27(13):i366-73, 2011.```

