Package 'parglms'

October 9, 2015

Title support for parallelized estimation of GLMs/GEEs
Version 1.0.0
Author VJ Carey <stvjc@channing.harvard.edu>
Description support for parallelized estimation of GLMs/GEEs, catering for dispersed data
Suggests RUnit, sandwich, MASS
Depends methods
Imports BiocGenerics, BiocParallel, BatchJobs
Maintainer VJ Carey <stvjc@channing.harvard.edu>
License Artistic-2.0
LazyLoad yes
BiocViews statistics, genetics
ByteCompile TRUE
NeedsCompilation no

R topics documented:

parGLM-methods	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	 •	•	3
parglms-package																																	

Index

parglms-package support for parallelized estimation of GLMs/GEEs

Description

support for parallelized estimation of GLMs/GEEs, catering for dispersed data

Details

The DESCRIPTION file:

Package:	parglms
Title:	support for parallelized estimation of GLMs/GEEs
Version:	1.0.0
Author:	VJ Carey <stvjc@channing.harvard.edu></stvjc@channing.harvard.edu>
Description:	support for parallelized estimation of GLMs/GEEs, catering for dispersed data
Suggests:	RUnit, sandwich, MASS
Depends:	methods
Imports:	BiocGenerics, BiocParallel, BatchJobs
Maintainer:	VJ Carey <stvjc@channing.harvard.edu></stvjc@channing.harvard.edu>
License:	Artistic-2.0
LazyLoad:	yes
BiocViews :	statistics, genetics
ByteCompile:	TRUE

Index of help topics:

parGLM-methods	fit GLM-like models with parallelized
	contributions to sufficient statistics
parglms-package	$\label{eq:support_for_parallelized estimation of} \\$
	GLMs/GEEs

In version 0.0.0 we established an approach to fitting GLM from data that have been persistently dispersed and managed by a Registry.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Maintainer: VJ Carey <stvjc@channing.harvard.edu>

References

This package shares an objective with the bigglm methods of biglm. In bigglm, a small-RAM-footprint algorithm is employed, with sequential chunking to update statistics in each iteration. In parGLM the footprint is likewise controllable, but statistics in each iteration are evaluated in parallel over chunks.

Examples

```
showMethods("parGLM")
```

parGLM-methods

fit GLM-like models with parallelized contributions to sufficient statistics

Description

This package addresses the problem of fitting GLM-like models in a scalable way, recognizing that data may be dispersed, with chunks processed in parallel, to create low-dimensional summaries from which model fits may be constructed.

Methods

signature(formula = "formula", store = "Registry") The model data are assumed to lie in the file.dir/jobs/* folders, with file.dir defined in the store, which is an instance of Registry.

Additional arguments must be supplied:

family a function that serves as a family for stats::glm

- **binit** a vector of initial values for regression parameter estimation, must conform to expectations of formula
- maxit an integer giving the maximum number of iterations allowed

tol a numeric giving the tolerance criterion

Failure to specify these triggers a fatal error.

The Registry instance can be modified to include a list element 'extractor'. This must be a function with arguments store, and codei. The standard extraction function is

```
function(store, i) loadResult(store, i)
```

It must return a data frame, conformant with the expectations of formula. Limited checking is performed.

The predict method computes the linear predictor on data identified by jobid in a BatchJobs registry. Results are returned as output of bplapply over the jobids specified in the predict call.

Examples

```
if (require(MASS) & require(BatchJobs) & require(BiocParallel)) {
  register(SerialParam())
  data(anorexia) # N = 72
  myr = makeRegistry("abc", file.dir=tempfile())
  chs = chunk(1:nrow(anorexia), n.chunks=18) # 4 recs/chunk
  f = function(x) anorexia[x,]
  batchMap(myr, f, chs)
  submitJobs(myr) # now getResult(myr,1) gives back a data.frame
  waitForJobs(myr) # simple dispersal
  pp = parGLM( Postwt ~ Treat + Prewt, myr,
    family=gaussian, binit = c(0,0,0,0), maxit=10, tol=.001 )
  print(summary(theLM <- lm(Postwt~Treat+Prewt, data=anorexia)))
  print(pp$coefficients - coef(theLM))
    if (require(sandwich)) {</pre>
```

```
hc0 <- vcovHC(theLM, type="HC0")
print(pp$robust.variance - hc0)
}
predict(pp, store=myr, jobids=2:3)
closeAllConnections()
}</pre>
```

Index

*Topic **methods** parGLM-methods, 3 *Topic **modeling** parGLM-methods, 3 *Topic **package** parglms-package, 1

bigglm, 2

parGLM(parGLM-methods), 3
parGLM,formula,Registry-method
 (parGLM-methods), 3
parGLM-methods, 3
parglms(parglms-package), 1
parglms-package, 1
predict(parGLM-methods), 3
print(parGLM-methods), 3

Registry, 2, 3

summary (parGLM-methods), 3